考虑产品结构和随机性的基于 Q 学习的拆卸和再加工工序综合调度混合元亨利术

Fuquan Wang;Yaping Fu;Kaizhou Gao;Yaoxin Wu;Song Gao
{"title":"考虑产品结构和随机性的基于 Q 学习的拆卸和再加工工序综合调度混合元亨利术","authors":"Fuquan Wang;Yaping Fu;Kaizhou Gao;Yaoxin Wu;Song Gao","doi":"10.23919/CSMS.2024.0007","DOIUrl":null,"url":null,"abstract":"Remanufacturing is regarded as a sustainable manufacturing paradigm of energy conservation and environment protection. To improve the efficiency of the remanufacturing process, this work investigates an integrated scheduling problem for disassembly and reprocessing in a remanufacturing process, where product structures and uncertainty are taken into account. First, a stochastic programming model is developed to minimize the maximum completion time (makespan). Second, a Q-learning based hybrid meta-heuristic (Q-HMH) is specially devised. In each iteration, a Q-learning method is employed to adaptively choose a premium algorithm from four candidate ones, including genetic algorithm (GA), artificial bee colony (ABC), shuffled frog-leaping algorithm (SFLA), and simulated annealing (SA) methods. At last, simulation experiments are carried out by using sixteen instances with different scales, and three state-of-the-art algorithms in literature and an exact solver CPLEX are chosen for comparisons. By analyzing the results with the average relative percentage deviation (RPD) metric, we find that Q-HMH outperforms its rivals by 9.79%-26.76%. The results and comparisons verify the excellent competitiveness of Q-HMH for solving the concerned problems.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":"4 2","pages":"184-209"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598210","citationCount":"0","resultStr":"{\"title\":\"A Q-Learning Based Hybrid Meta-Heuristic for Integrated Scheduling of Disassembly and Reprocessing Processes Considering Product Structures and Stochasticity\",\"authors\":\"Fuquan Wang;Yaping Fu;Kaizhou Gao;Yaoxin Wu;Song Gao\",\"doi\":\"10.23919/CSMS.2024.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remanufacturing is regarded as a sustainable manufacturing paradigm of energy conservation and environment protection. To improve the efficiency of the remanufacturing process, this work investigates an integrated scheduling problem for disassembly and reprocessing in a remanufacturing process, where product structures and uncertainty are taken into account. First, a stochastic programming model is developed to minimize the maximum completion time (makespan). Second, a Q-learning based hybrid meta-heuristic (Q-HMH) is specially devised. In each iteration, a Q-learning method is employed to adaptively choose a premium algorithm from four candidate ones, including genetic algorithm (GA), artificial bee colony (ABC), shuffled frog-leaping algorithm (SFLA), and simulated annealing (SA) methods. At last, simulation experiments are carried out by using sixteen instances with different scales, and three state-of-the-art algorithms in literature and an exact solver CPLEX are chosen for comparisons. By analyzing the results with the average relative percentage deviation (RPD) metric, we find that Q-HMH outperforms its rivals by 9.79%-26.76%. The results and comparisons verify the excellent competitiveness of Q-HMH for solving the concerned problems.\",\"PeriodicalId\":65786,\"journal\":{\"name\":\"复杂系统建模与仿真(英文)\",\"volume\":\"4 2\",\"pages\":\"184-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598210\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复杂系统建模与仿真(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10598210/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/10598210/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

再制造被认为是一种节能环保的可持续制造模式。为提高再制造过程的效率,本研究探讨了再制造过程中拆卸和再加工的综合调度问题,其中考虑了产品结构和不确定性。首先,开发了一个随机编程模型,以最小化最大完成时间(makespan)。其次,特别设计了一种基于 Q-learning 的混合元启发式(Q-HMH)。在每次迭代中,采用 Q-learning 方法从四种候选算法中自适应地选择一种优质算法,包括遗传算法(GA)、人工蜂群(ABC)、洗牌蛙跳算法(SFLA)和模拟退火(SA)方法。最后,利用 16 个不同规模的实例进行了仿真实验,并选择了文献中三种最先进的算法和一种精确求解器 CPLEX 进行比较。通过使用平均相对百分比偏差(RPD)指标对结果进行分析,我们发现 Q-HMH 优于对手 9.79%-26.76%。这些结果和比较验证了 Q-HMH 在解决相关问题方面的卓越竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Q-Learning Based Hybrid Meta-Heuristic for Integrated Scheduling of Disassembly and Reprocessing Processes Considering Product Structures and Stochasticity
Remanufacturing is regarded as a sustainable manufacturing paradigm of energy conservation and environment protection. To improve the efficiency of the remanufacturing process, this work investigates an integrated scheduling problem for disassembly and reprocessing in a remanufacturing process, where product structures and uncertainty are taken into account. First, a stochastic programming model is developed to minimize the maximum completion time (makespan). Second, a Q-learning based hybrid meta-heuristic (Q-HMH) is specially devised. In each iteration, a Q-learning method is employed to adaptively choose a premium algorithm from four candidate ones, including genetic algorithm (GA), artificial bee colony (ABC), shuffled frog-leaping algorithm (SFLA), and simulated annealing (SA) methods. At last, simulation experiments are carried out by using sixteen instances with different scales, and three state-of-the-art algorithms in literature and an exact solver CPLEX are chosen for comparisons. By analyzing the results with the average relative percentage deviation (RPD) metric, we find that Q-HMH outperforms its rivals by 9.79%-26.76%. The results and comparisons verify the excellent competitiveness of Q-HMH for solving the concerned problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信