多机器人监控系统合作路线规划的双级局部搜索自适应记忆算法

Hao Cheng;Jin Yi;Wei Xia;Huayan Pu;Jun Luo
{"title":"多机器人监控系统合作路线规划的双级局部搜索自适应记忆算法","authors":"Hao Cheng;Jin Yi;Wei Xia;Huayan Pu;Jun Luo","doi":"10.23919/CSMS.2024.0006","DOIUrl":null,"url":null,"abstract":"The heightened autonomy and robust adaptability inherent in a multi-robot system have proven pivotal in disaster search and rescue, agricultural irrigation, and environmental monitoring. This study addresses the coordination of multiple robots for the surveillance of various key target positions within an area. This involves the allocation of target positions among robots and the concurrent planning of routes for each robot. To tackle these challenges, we formulate a unified optimization model addressing both target allocation and route planning. Subsequently, we introduce an adaptive memetic algorithm featuring dual-level local search strategies. This algorithm operates independently among and within robots to effectively solve the optimization problem associated with surveillance. The proposed method's efficacy is substantiated through comparative numerical experiments and simulated experiments involving diverse scales of robot teams and different target positions.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":"4 2","pages":"210-221"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598213","citationCount":"0","resultStr":"{\"title\":\"Adaptive Memetic Algorithm with Dual-Level Local Search for Cooperative Route Planning of Multi-Robot Surveillance Systems\",\"authors\":\"Hao Cheng;Jin Yi;Wei Xia;Huayan Pu;Jun Luo\",\"doi\":\"10.23919/CSMS.2024.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heightened autonomy and robust adaptability inherent in a multi-robot system have proven pivotal in disaster search and rescue, agricultural irrigation, and environmental monitoring. This study addresses the coordination of multiple robots for the surveillance of various key target positions within an area. This involves the allocation of target positions among robots and the concurrent planning of routes for each robot. To tackle these challenges, we formulate a unified optimization model addressing both target allocation and route planning. Subsequently, we introduce an adaptive memetic algorithm featuring dual-level local search strategies. This algorithm operates independently among and within robots to effectively solve the optimization problem associated with surveillance. The proposed method's efficacy is substantiated through comparative numerical experiments and simulated experiments involving diverse scales of robot teams and different target positions.\",\"PeriodicalId\":65786,\"journal\":{\"name\":\"复杂系统建模与仿真(英文)\",\"volume\":\"4 2\",\"pages\":\"210-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598213\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复杂系统建模与仿真(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10598213/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/10598213/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,多机器人系统所固有的高度自主性和强大的适应能力在灾难搜救、农业灌溉和环境监测中发挥着关键作用。本研究探讨了如何协调多个机器人监视区域内的各种关键目标位置。这涉及到在机器人之间分配目标位置以及同时规划每个机器人的路线。为了应对这些挑战,我们制定了一个统一的优化模型,同时解决目标分配和路线规划问题。随后,我们引入了一种具有双级局部搜索策略的自适应记忆算法。该算法在机器人之间和机器人内部独立运行,可有效解决与监控相关的优化问题。通过比较数值实验和涉及不同规模机器人团队和不同目标位置的模拟实验,证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Memetic Algorithm with Dual-Level Local Search for Cooperative Route Planning of Multi-Robot Surveillance Systems
The heightened autonomy and robust adaptability inherent in a multi-robot system have proven pivotal in disaster search and rescue, agricultural irrigation, and environmental monitoring. This study addresses the coordination of multiple robots for the surveillance of various key target positions within an area. This involves the allocation of target positions among robots and the concurrent planning of routes for each robot. To tackle these challenges, we formulate a unified optimization model addressing both target allocation and route planning. Subsequently, we introduce an adaptive memetic algorithm featuring dual-level local search strategies. This algorithm operates independently among and within robots to effectively solve the optimization problem associated with surveillance. The proposed method's efficacy is substantiated through comparative numerical experiments and simulated experiments involving diverse scales of robot teams and different target positions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信