{"title":"多机器人监控系统合作路线规划的双级局部搜索自适应记忆算法","authors":"Hao Cheng;Jin Yi;Wei Xia;Huayan Pu;Jun Luo","doi":"10.23919/CSMS.2024.0006","DOIUrl":null,"url":null,"abstract":"The heightened autonomy and robust adaptability inherent in a multi-robot system have proven pivotal in disaster search and rescue, agricultural irrigation, and environmental monitoring. This study addresses the coordination of multiple robots for the surveillance of various key target positions within an area. This involves the allocation of target positions among robots and the concurrent planning of routes for each robot. To tackle these challenges, we formulate a unified optimization model addressing both target allocation and route planning. Subsequently, we introduce an adaptive memetic algorithm featuring dual-level local search strategies. This algorithm operates independently among and within robots to effectively solve the optimization problem associated with surveillance. The proposed method's efficacy is substantiated through comparative numerical experiments and simulated experiments involving diverse scales of robot teams and different target positions.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":"4 2","pages":"210-221"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598213","citationCount":"0","resultStr":"{\"title\":\"Adaptive Memetic Algorithm with Dual-Level Local Search for Cooperative Route Planning of Multi-Robot Surveillance Systems\",\"authors\":\"Hao Cheng;Jin Yi;Wei Xia;Huayan Pu;Jun Luo\",\"doi\":\"10.23919/CSMS.2024.0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heightened autonomy and robust adaptability inherent in a multi-robot system have proven pivotal in disaster search and rescue, agricultural irrigation, and environmental monitoring. This study addresses the coordination of multiple robots for the surveillance of various key target positions within an area. This involves the allocation of target positions among robots and the concurrent planning of routes for each robot. To tackle these challenges, we formulate a unified optimization model addressing both target allocation and route planning. Subsequently, we introduce an adaptive memetic algorithm featuring dual-level local search strategies. This algorithm operates independently among and within robots to effectively solve the optimization problem associated with surveillance. The proposed method's efficacy is substantiated through comparative numerical experiments and simulated experiments involving diverse scales of robot teams and different target positions.\",\"PeriodicalId\":65786,\"journal\":{\"name\":\"复杂系统建模与仿真(英文)\",\"volume\":\"4 2\",\"pages\":\"210-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10598213\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复杂系统建模与仿真(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10598213/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/10598213/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Memetic Algorithm with Dual-Level Local Search for Cooperative Route Planning of Multi-Robot Surveillance Systems
The heightened autonomy and robust adaptability inherent in a multi-robot system have proven pivotal in disaster search and rescue, agricultural irrigation, and environmental monitoring. This study addresses the coordination of multiple robots for the surveillance of various key target positions within an area. This involves the allocation of target positions among robots and the concurrent planning of routes for each robot. To tackle these challenges, we formulate a unified optimization model addressing both target allocation and route planning. Subsequently, we introduce an adaptive memetic algorithm featuring dual-level local search strategies. This algorithm operates independently among and within robots to effectively solve the optimization problem associated with surveillance. The proposed method's efficacy is substantiated through comparative numerical experiments and simulated experiments involving diverse scales of robot teams and different target positions.