分布稳健的机会约束核支持向量机

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fengming Lin , Shu-Cherng Fang , Xiaolei Fang , Zheming Gao
{"title":"分布稳健的机会约束核支持向量机","authors":"Fengming Lin ,&nbsp;Shu-Cherng Fang ,&nbsp;Xiaolei Fang ,&nbsp;Zheming Gao","doi":"10.1016/j.cor.2024.106755","DOIUrl":null,"url":null,"abstract":"<div><p>Support vector machine (SVM) is a powerful model for supervised learning. This article addresses the nonlinear binary classification problem using kernel-based SVM with uncertainty involved in the input data specified by the first- and second-order moments. To achieve a robust classifier with small probabilities of misclassification, we investigate a distributionally robust chance-constrained kernel-based SVM model. Since the moment information in the original problem becomes unclear/unavailable in the feature space via kernel transformation, we develop a data-driven approach utilizing empirical moments to provide a second-order cone programming (SOCP) reformulation for efficient computation. To speed up the required computations for solving large-size problems in higher dimensional space and/or with more sampling points involved in estimating empirical moments, we further design an alternating direction multipliers-based algorithm for fast computations. Extensive computational results support the effectiveness and efficiency of the proposed model and solution method. Results on public benchmark datasets without any moment information indicate that the proposed approach still works and, surprisingly, outperforms some commonly used state-of-the-art kernel-based SVM models.</p></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributionally robust chance-constrained kernel-based support vector machine\",\"authors\":\"Fengming Lin ,&nbsp;Shu-Cherng Fang ,&nbsp;Xiaolei Fang ,&nbsp;Zheming Gao\",\"doi\":\"10.1016/j.cor.2024.106755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Support vector machine (SVM) is a powerful model for supervised learning. This article addresses the nonlinear binary classification problem using kernel-based SVM with uncertainty involved in the input data specified by the first- and second-order moments. To achieve a robust classifier with small probabilities of misclassification, we investigate a distributionally robust chance-constrained kernel-based SVM model. Since the moment information in the original problem becomes unclear/unavailable in the feature space via kernel transformation, we develop a data-driven approach utilizing empirical moments to provide a second-order cone programming (SOCP) reformulation for efficient computation. To speed up the required computations for solving large-size problems in higher dimensional space and/or with more sampling points involved in estimating empirical moments, we further design an alternating direction multipliers-based algorithm for fast computations. Extensive computational results support the effectiveness and efficiency of the proposed model and solution method. Results on public benchmark datasets without any moment information indicate that the proposed approach still works and, surprisingly, outperforms some commonly used state-of-the-art kernel-based SVM models.</p></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054824002272\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824002272","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机(SVM)是一种强大的监督学习模型。本文使用基于核的 SVM 解决非线性二元分类问题,输入数据中的不确定性由一阶和二阶矩指定。为了获得误分类概率较小的鲁棒分类器,我们研究了一种基于核的分布鲁棒机会约束 SVM 模型。由于原始问题中的矩信息通过核变换在特征空间中变得不清晰/不可用,我们开发了一种利用经验矩的数据驱动方法,为高效计算提供了一种二阶锥编程(SOCP)重构。为了加快解决高维空间中的大型问题和/或估计经验矩时涉及的更多采样点所需的计算速度,我们进一步设计了一种基于交替方向乘法器的快速计算算法。广泛的计算结果证明了所提模型和求解方法的有效性和效率。在没有任何矩信息的公共基准数据集上的结果表明,所提出的方法仍然有效,而且令人惊讶的是,其性能优于一些常用的基于核的先进 SVM 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributionally robust chance-constrained kernel-based support vector machine

Support vector machine (SVM) is a powerful model for supervised learning. This article addresses the nonlinear binary classification problem using kernel-based SVM with uncertainty involved in the input data specified by the first- and second-order moments. To achieve a robust classifier with small probabilities of misclassification, we investigate a distributionally robust chance-constrained kernel-based SVM model. Since the moment information in the original problem becomes unclear/unavailable in the feature space via kernel transformation, we develop a data-driven approach utilizing empirical moments to provide a second-order cone programming (SOCP) reformulation for efficient computation. To speed up the required computations for solving large-size problems in higher dimensional space and/or with more sampling points involved in estimating empirical moments, we further design an alternating direction multipliers-based algorithm for fast computations. Extensive computational results support the effectiveness and efficiency of the proposed model and solution method. Results on public benchmark datasets without any moment information indicate that the proposed approach still works and, surprisingly, outperforms some commonly used state-of-the-art kernel-based SVM models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信