{"title":"重载路由 WSPD 扳手","authors":"Prosenjit Bose, Tyler Tuttle","doi":"10.1016/j.comgeo.2024.102121","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a construction of a spanner on a set of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> that we call a heavy path WSPD spanner. The construction is parameterized by a constant <span><math><mi>s</mi><mo>></mo><mn>2</mn></math></span> called the separation ratio. The size of the graph is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>n</mi><mo>)</mo></math></span> and the spanning ratio is at most <span><math><mn>1</mn><mo>+</mo><mn>2</mn><mo>/</mo><mi>s</mi><mo>+</mo><mn>2</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show that this graph has a hop spanning ratio of at most <span><math><mn>2</mn><mi>lg</mi><mo></mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</p><p>We present a memoryless local routing algorithm for heavy path WSPD spanners. The routing algorithm requires a vertex <em>v</em> of the graph to store <span><math><mi>O</mi><mo>(</mo><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> bits of information, where <span><math><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is the degree of <em>v</em>. The routing ratio is at most <span><math><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and at least <span><math><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>s</mi></math></span> in the worst case. The number of edges on the routing path is bounded by <span><math><mn>2</mn><mi>lg</mi><mo></mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</p><p>We then show that the heavy path WSPD spanner can be constructed in metric spaces of bounded doubling dimension. These metric spaces have been studied in computational geometry as a generalization of Euclidean space. We show that, in a metric space with doubling dimension <em>λ</em>, the heavy path WSPD spanner has size <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>λ</mi></mrow></msup><mi>n</mi><mo>)</mo></math></span> where <em>s</em> is the separation ratio. The spanning ratio and hop spanning ratio are the same as in the Euclidean case.</p><p>Finally, we show that the local routing algorithm works in the bounded doubling dimension case. The vertices require the same amount of storage, but the routing ratio becomes at most <span><math><mn>1</mn><mo>+</mo><mo>(</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mi>τ</mi></mrow><mrow><mi>τ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo><mo>/</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> in the worst case, where <span><math><mi>τ</mi><mo>≥</mo><mn>11</mn></math></span> is a constant related to the doubling dimension.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000439/pdfft?md5=bf39cad158ed560ddaba5bed399d108b&pid=1-s2.0-S0925772124000439-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Routing on heavy path WSPD spanners\",\"authors\":\"Prosenjit Bose, Tyler Tuttle\",\"doi\":\"10.1016/j.comgeo.2024.102121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we present a construction of a spanner on a set of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> that we call a heavy path WSPD spanner. The construction is parameterized by a constant <span><math><mi>s</mi><mo>></mo><mn>2</mn></math></span> called the separation ratio. The size of the graph is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>n</mi><mo>)</mo></math></span> and the spanning ratio is at most <span><math><mn>1</mn><mo>+</mo><mn>2</mn><mo>/</mo><mi>s</mi><mo>+</mo><mn>2</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show that this graph has a hop spanning ratio of at most <span><math><mn>2</mn><mi>lg</mi><mo></mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</p><p>We present a memoryless local routing algorithm for heavy path WSPD spanners. The routing algorithm requires a vertex <em>v</em> of the graph to store <span><math><mi>O</mi><mo>(</mo><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> bits of information, where <span><math><mi>deg</mi><mo></mo><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is the degree of <em>v</em>. The routing ratio is at most <span><math><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and at least <span><math><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>s</mi></math></span> in the worst case. The number of edges on the routing path is bounded by <span><math><mn>2</mn><mi>lg</mi><mo></mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</p><p>We then show that the heavy path WSPD spanner can be constructed in metric spaces of bounded doubling dimension. These metric spaces have been studied in computational geometry as a generalization of Euclidean space. We show that, in a metric space with doubling dimension <em>λ</em>, the heavy path WSPD spanner has size <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>λ</mi></mrow></msup><mi>n</mi><mo>)</mo></math></span> where <em>s</em> is the separation ratio. The spanning ratio and hop spanning ratio are the same as in the Euclidean case.</p><p>Finally, we show that the local routing algorithm works in the bounded doubling dimension case. The vertices require the same amount of storage, but the routing ratio becomes at most <span><math><mn>1</mn><mo>+</mo><mo>(</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mi>τ</mi></mrow><mrow><mi>τ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo><mo>/</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> in the worst case, where <span><math><mi>τ</mi><mo>≥</mo><mn>11</mn></math></span> is a constant related to the doubling dimension.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000439/pdfft?md5=bf39cad158ed560ddaba5bed399d108b&pid=1-s2.0-S0925772124000439-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000439\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000439","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们提出了一种在 Rd 中 n 个点的集合上构建扳手的方法,我们称之为重路径 WSPD 扳手。该构造的参数是一个称为分离率的常数 s>2。该图的大小为 O(sdn),跨度比最多为 1+2/s+2/(s-1)。我们还证明,该图的跳数跨度比最多为 2lgn+1。我们提出了一种适用于重路径 WSPD 跳数的无记忆局部路由算法。路由算法要求图的顶点 v 存储 O(deg(v)logn) 位信息,其中 deg(v) 是 v 的度数。路由比最多为 1+4/s+1/(s-1),最坏情况下至少为 1+4/s。路由路径上的边数以 2lgn+1 为界。我们随后证明,重路径 WSPD 盘符可以在有界倍维度的度量空间中构建。这些度量空间作为欧几里得空间的广义,在计算几何中得到了研究。我们证明,在倍维度为 λ 的度量空间中,重路径 WSPD 扩展器的大小为 O(sλn),其中 s 是分离比。跨度比和跳数跨度比与欧氏情况相同。最后,我们证明了本地路由算法在有界倍维情况下的工作原理。顶点所需的存储量相同,但路由比在最坏情况下最多为 1+(2+ττ-1)/s+1/(s-1),其中 τ≥11 是一个与倍维相关的常数。
In this article, we present a construction of a spanner on a set of n points in that we call a heavy path WSPD spanner. The construction is parameterized by a constant called the separation ratio. The size of the graph is and the spanning ratio is at most . We also show that this graph has a hop spanning ratio of at most .
We present a memoryless local routing algorithm for heavy path WSPD spanners. The routing algorithm requires a vertex v of the graph to store bits of information, where is the degree of v. The routing ratio is at most and at least in the worst case. The number of edges on the routing path is bounded by .
We then show that the heavy path WSPD spanner can be constructed in metric spaces of bounded doubling dimension. These metric spaces have been studied in computational geometry as a generalization of Euclidean space. We show that, in a metric space with doubling dimension λ, the heavy path WSPD spanner has size where s is the separation ratio. The spanning ratio and hop spanning ratio are the same as in the Euclidean case.
Finally, we show that the local routing algorithm works in the bounded doubling dimension case. The vertices require the same amount of storage, but the routing ratio becomes at most in the worst case, where is a constant related to the doubling dimension.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.