重载路由 WSPD 扳手

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Prosenjit Bose, Tyler Tuttle
{"title":"重载路由 WSPD 扳手","authors":"Prosenjit Bose,&nbsp;Tyler Tuttle","doi":"10.1016/j.comgeo.2024.102121","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we present a construction of a spanner on a set of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> that we call a heavy path WSPD spanner. The construction is parameterized by a constant <span><math><mi>s</mi><mo>&gt;</mo><mn>2</mn></math></span> called the separation ratio. The size of the graph is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>n</mi><mo>)</mo></math></span> and the spanning ratio is at most <span><math><mn>1</mn><mo>+</mo><mn>2</mn><mo>/</mo><mi>s</mi><mo>+</mo><mn>2</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show that this graph has a hop spanning ratio of at most <span><math><mn>2</mn><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</p><p>We present a memoryless local routing algorithm for heavy path WSPD spanners. The routing algorithm requires a vertex <em>v</em> of the graph to store <span><math><mi>O</mi><mo>(</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> bits of information, where <span><math><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is the degree of <em>v</em>. The routing ratio is at most <span><math><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and at least <span><math><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>s</mi></math></span> in the worst case. The number of edges on the routing path is bounded by <span><math><mn>2</mn><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</p><p>We then show that the heavy path WSPD spanner can be constructed in metric spaces of bounded doubling dimension. These metric spaces have been studied in computational geometry as a generalization of Euclidean space. We show that, in a metric space with doubling dimension <em>λ</em>, the heavy path WSPD spanner has size <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>λ</mi></mrow></msup><mi>n</mi><mo>)</mo></math></span> where <em>s</em> is the separation ratio. The spanning ratio and hop spanning ratio are the same as in the Euclidean case.</p><p>Finally, we show that the local routing algorithm works in the bounded doubling dimension case. The vertices require the same amount of storage, but the routing ratio becomes at most <span><math><mn>1</mn><mo>+</mo><mo>(</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mi>τ</mi></mrow><mrow><mi>τ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo><mo>/</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> in the worst case, where <span><math><mi>τ</mi><mo>≥</mo><mn>11</mn></math></span> is a constant related to the doubling dimension.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000439/pdfft?md5=bf39cad158ed560ddaba5bed399d108b&pid=1-s2.0-S0925772124000439-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Routing on heavy path WSPD spanners\",\"authors\":\"Prosenjit Bose,&nbsp;Tyler Tuttle\",\"doi\":\"10.1016/j.comgeo.2024.102121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we present a construction of a spanner on a set of <em>n</em> points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> that we call a heavy path WSPD spanner. The construction is parameterized by a constant <span><math><mi>s</mi><mo>&gt;</mo><mn>2</mn></math></span> called the separation ratio. The size of the graph is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>n</mi><mo>)</mo></math></span> and the spanning ratio is at most <span><math><mn>1</mn><mo>+</mo><mn>2</mn><mo>/</mo><mi>s</mi><mo>+</mo><mn>2</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We also show that this graph has a hop spanning ratio of at most <span><math><mn>2</mn><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</p><p>We present a memoryless local routing algorithm for heavy path WSPD spanners. The routing algorithm requires a vertex <em>v</em> of the graph to store <span><math><mi>O</mi><mo>(</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> bits of information, where <span><math><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>)</mo></math></span> is the degree of <em>v</em>. The routing ratio is at most <span><math><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and at least <span><math><mn>1</mn><mo>+</mo><mn>4</mn><mo>/</mo><mi>s</mi></math></span> in the worst case. The number of edges on the routing path is bounded by <span><math><mn>2</mn><mi>lg</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mn>1</mn></math></span>.</p><p>We then show that the heavy path WSPD spanner can be constructed in metric spaces of bounded doubling dimension. These metric spaces have been studied in computational geometry as a generalization of Euclidean space. We show that, in a metric space with doubling dimension <em>λ</em>, the heavy path WSPD spanner has size <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>λ</mi></mrow></msup><mi>n</mi><mo>)</mo></math></span> where <em>s</em> is the separation ratio. The spanning ratio and hop spanning ratio are the same as in the Euclidean case.</p><p>Finally, we show that the local routing algorithm works in the bounded doubling dimension case. The vertices require the same amount of storage, but the routing ratio becomes at most <span><math><mn>1</mn><mo>+</mo><mo>(</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mi>τ</mi></mrow><mrow><mi>τ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>)</mo><mo>/</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>s</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> in the worst case, where <span><math><mi>τ</mi><mo>≥</mo><mn>11</mn></math></span> is a constant related to the doubling dimension.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000439/pdfft?md5=bf39cad158ed560ddaba5bed399d108b&pid=1-s2.0-S0925772124000439-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000439\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000439","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种在 Rd 中 n 个点的集合上构建扳手的方法,我们称之为重路径 WSPD 扳手。该构造的参数是一个称为分离率的常数 s>2。该图的大小为 O(sdn),跨度比最多为 1+2/s+2/(s-1)。我们还证明,该图的跳数跨度比最多为 2lgn+1。我们提出了一种适用于重路径 WSPD 跳数的无记忆局部路由算法。路由算法要求图的顶点 v 存储 O(deg(v)logn) 位信息,其中 deg(v) 是 v 的度数。路由比最多为 1+4/s+1/(s-1),最坏情况下至少为 1+4/s。路由路径上的边数以 2lgn+1 为界。我们随后证明,重路径 WSPD 盘符可以在有界倍维度的度量空间中构建。这些度量空间作为欧几里得空间的广义,在计算几何中得到了研究。我们证明,在倍维度为 λ 的度量空间中,重路径 WSPD 扩展器的大小为 O(sλn),其中 s 是分离比。跨度比和跳数跨度比与欧氏情况相同。最后,我们证明了本地路由算法在有界倍维情况下的工作原理。顶点所需的存储量相同,但路由比在最坏情况下最多为 1+(2+ττ-1)/s+1/(s-1),其中 τ≥11 是一个与倍维相关的常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Routing on heavy path WSPD spanners

In this article, we present a construction of a spanner on a set of n points in Rd that we call a heavy path WSPD spanner. The construction is parameterized by a constant s>2 called the separation ratio. The size of the graph is O(sdn) and the spanning ratio is at most 1+2/s+2/(s1). We also show that this graph has a hop spanning ratio of at most 2lgn+1.

We present a memoryless local routing algorithm for heavy path WSPD spanners. The routing algorithm requires a vertex v of the graph to store O(deg(v)logn) bits of information, where deg(v) is the degree of v. The routing ratio is at most 1+4/s+1/(s1) and at least 1+4/s in the worst case. The number of edges on the routing path is bounded by 2lgn+1.

We then show that the heavy path WSPD spanner can be constructed in metric spaces of bounded doubling dimension. These metric spaces have been studied in computational geometry as a generalization of Euclidean space. We show that, in a metric space with doubling dimension λ, the heavy path WSPD spanner has size O(sλn) where s is the separation ratio. The spanning ratio and hop spanning ratio are the same as in the Euclidean case.

Finally, we show that the local routing algorithm works in the bounded doubling dimension case. The vertices require the same amount of storage, but the routing ratio becomes at most 1+(2+ττ1)/s+1/(s1) in the worst case, where τ11 is a constant related to the doubling dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信