用于渐进文本生成的 Seq2Seq 动态规划网络

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Di Wu, Peng Cheng, Yuying Zheng
{"title":"用于渐进文本生成的 Seq2Seq 动态规划网络","authors":"Di Wu,&nbsp;Peng Cheng,&nbsp;Yuying Zheng","doi":"10.1016/j.csl.2024.101687","DOIUrl":null,"url":null,"abstract":"<div><p>Long text generation is a hot topic in natural language processing. To address the problem of insufficient semantic representation and incoherent text generation in existing long text models, the Seq2Seq dynamic planning network progressive text generation model (DPPG-BART) is proposed. In the data pre-processing stage, the lexical division sorting algorithm is used. To obtain hierarchical sequences of keywords with clear information content, word weight values are calculated and ranked by TF-IDF of word embedding. To enhance the input representation, the dynamic planning progressive generation network is constructed. Positional features and word embedding vector features are integrated at the input side of the model. At the same time, to enrich the semantic information and expand the content of the text, the relevant concept words are generated by the concept expansion module. The scoring network and feedback mechanism are used to adjust the concept expansion module. Experimental results show that the DPPG-BART model is optimized over GPT2-S, GPT2-L, BART and ProGen-2 model approaches in terms of metric values of MSJ, B-BLEU and FBD on long text datasets from two different domains, CNN and Writing Prompts.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000706/pdfft?md5=9c314286f96f095183826029b974049f&pid=1-s2.0-S0885230824000706-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Seq2Seq dynamic planning network for progressive text generation\",\"authors\":\"Di Wu,&nbsp;Peng Cheng,&nbsp;Yuying Zheng\",\"doi\":\"10.1016/j.csl.2024.101687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Long text generation is a hot topic in natural language processing. To address the problem of insufficient semantic representation and incoherent text generation in existing long text models, the Seq2Seq dynamic planning network progressive text generation model (DPPG-BART) is proposed. In the data pre-processing stage, the lexical division sorting algorithm is used. To obtain hierarchical sequences of keywords with clear information content, word weight values are calculated and ranked by TF-IDF of word embedding. To enhance the input representation, the dynamic planning progressive generation network is constructed. Positional features and word embedding vector features are integrated at the input side of the model. At the same time, to enrich the semantic information and expand the content of the text, the relevant concept words are generated by the concept expansion module. The scoring network and feedback mechanism are used to adjust the concept expansion module. Experimental results show that the DPPG-BART model is optimized over GPT2-S, GPT2-L, BART and ProGen-2 model approaches in terms of metric values of MSJ, B-BLEU and FBD on long text datasets from two different domains, CNN and Writing Prompts.</p></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000706/pdfft?md5=9c314286f96f095183826029b974049f&pid=1-s2.0-S0885230824000706-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000706\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000706","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

长文本生成是自然语言处理领域的一个热门话题。针对现有长文本模型中语义表征不足和文本生成不连贯的问题,提出了 Seq2Seq 动态规划网络渐进文本生成模型(DPPG-BART)。在数据预处理阶段,采用词性划分排序算法。为获得信息内容清晰的关键词分层序列,通过词嵌入的 TF-IDF 计算词权重值并进行排序。为增强输入表示,构建了动态规划渐进生成网络。在模型的输入端集成了位置特征和词嵌入向量特征。同时,为了丰富语义信息和扩展文本内容,概念扩展模块会生成相关的概念词。评分网络和反馈机制用于调整概念扩展模块。实验结果表明,在 CNN 和写作提示这两个不同领域的长文本数据集上,DPPG-BART 模型在 MSJ、B-BLEU 和 FBD 的度量值方面优于 GPT2-S、GPT2-L、BART 和 ProGen-2 模型方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seq2Seq dynamic planning network for progressive text generation

Long text generation is a hot topic in natural language processing. To address the problem of insufficient semantic representation and incoherent text generation in existing long text models, the Seq2Seq dynamic planning network progressive text generation model (DPPG-BART) is proposed. In the data pre-processing stage, the lexical division sorting algorithm is used. To obtain hierarchical sequences of keywords with clear information content, word weight values are calculated and ranked by TF-IDF of word embedding. To enhance the input representation, the dynamic planning progressive generation network is constructed. Positional features and word embedding vector features are integrated at the input side of the model. At the same time, to enrich the semantic information and expand the content of the text, the relevant concept words are generated by the concept expansion module. The scoring network and feedback mechanism are used to adjust the concept expansion module. Experimental results show that the DPPG-BART model is optimized over GPT2-S, GPT2-L, BART and ProGen-2 model approaches in terms of metric values of MSJ, B-BLEU and FBD on long text datasets from two different domains, CNN and Writing Prompts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Speech and Language
Computer Speech and Language 工程技术-计算机:人工智能
CiteScore
11.30
自引率
4.70%
发文量
80
审稿时长
22.9 weeks
期刊介绍: Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language. The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信