自适应块状质量动态模型及其在连续机器人中的控制应用

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"自适应块状质量动态模型及其在连续机器人中的控制应用","authors":"","doi":"10.1016/j.mechmachtheory.2024.105736","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic modeling for continuum robots remains challenging due to their large nonlinear deformation and the variation of dynamic parameters during movement. In this paper, a lumped-mass dynamic model (LMD) for a continuum robot is constructed including elastic and viscous parameters in the robotic joints. Then the appropriate dynamic parameters (e.g. spring and damping coefficients of the LMD) with respect to the motion status (e.g. position and velocity of the robot) are estimated using a Genetic Algorithm (GA). Based on the obtained data set, a Multi-Layer Perception (MLP) is trained to establish a direct mapping from the motion status to the dynamic parameters, so the LMD can tune its parameters in real-time when moving within the workspace, resulting an adaptive lumped-mass dynamic model (ALMD). Compared to the fixed-parameter LMD, the modeling error of the ALMD is reduced by up to 60.2 %. Finally, a feedforward controller is implemented to control a continuum robotic prototype using the presented ALMD, reducing the maximum tracking error by 67.5 %.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive lumped-mass dynamic model and its control application for continuum robots\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmachtheory.2024.105736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamic modeling for continuum robots remains challenging due to their large nonlinear deformation and the variation of dynamic parameters during movement. In this paper, a lumped-mass dynamic model (LMD) for a continuum robot is constructed including elastic and viscous parameters in the robotic joints. Then the appropriate dynamic parameters (e.g. spring and damping coefficients of the LMD) with respect to the motion status (e.g. position and velocity of the robot) are estimated using a Genetic Algorithm (GA). Based on the obtained data set, a Multi-Layer Perception (MLP) is trained to establish a direct mapping from the motion status to the dynamic parameters, so the LMD can tune its parameters in real-time when moving within the workspace, resulting an adaptive lumped-mass dynamic model (ALMD). Compared to the fixed-parameter LMD, the modeling error of the ALMD is reduced by up to 60.2 %. Finally, a feedforward controller is implemented to control a continuum robotic prototype using the presented ALMD, reducing the maximum tracking error by 67.5 %.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24001630\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001630","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于连续体机器人具有较大的非线性变形,且在运动过程中动态参数会发生变化,因此其动态建模仍具有挑战性。本文构建了一个连续体机器人的总质量动态模型(LMD),包括机器人关节的弹性和粘性参数。然后使用遗传算法(GA)估算与运动状态(如机器人的位置和速度)相关的适当动态参数(如 LMD 的弹簧和阻尼系数)。根据获得的数据集,对多层感知(MLP)进行训练,以建立从运动状态到动态参数的直接映射,从而使 LMD 在工作区内运动时能够实时调整参数,形成自适应块状质量动态模型(ALMD)。与固定参数的 LMD 相比,ALMD 的建模误差最多可减少 60.2%。最后,利用所提出的 ALMD 实现了前馈控制器,以控制连续机器人原型,最大跟踪误差减少了 67.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive lumped-mass dynamic model and its control application for continuum robots

Dynamic modeling for continuum robots remains challenging due to their large nonlinear deformation and the variation of dynamic parameters during movement. In this paper, a lumped-mass dynamic model (LMD) for a continuum robot is constructed including elastic and viscous parameters in the robotic joints. Then the appropriate dynamic parameters (e.g. spring and damping coefficients of the LMD) with respect to the motion status (e.g. position and velocity of the robot) are estimated using a Genetic Algorithm (GA). Based on the obtained data set, a Multi-Layer Perception (MLP) is trained to establish a direct mapping from the motion status to the dynamic parameters, so the LMD can tune its parameters in real-time when moving within the workspace, resulting an adaptive lumped-mass dynamic model (ALMD). Compared to the fixed-parameter LMD, the modeling error of the ALMD is reduced by up to 60.2 %. Finally, a feedforward controller is implemented to control a continuum robotic prototype using the presented ALMD, reducing the maximum tracking error by 67.5 %.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信