将改进的 CSF 模型和改进的 KGC 技术纳入 SPH,用于选择性激光熔化过程建模

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
{"title":"将改进的 CSF 模型和改进的 KGC 技术纳入 SPH,用于选择性激光熔化过程建模","authors":"","doi":"10.1016/j.enganabound.2024.105876","DOIUrl":null,"url":null,"abstract":"<div><p>Selective laser melting (SLM) is an advanced additive manufacturing technology related to the powder bed fusion (PBF) process. Numerical simulation is the key means of realizing the shape and property control of components for additive manufacturing. In this paper, an improved smoothed particle hydrodynamics (SPH) method is proposed for the numerical simulation of the SLM process, focusing on the melt pool flow. The accuracy of calculations at the free surface is significant for modeling the SLM process and there are kernel function truncation errors of the SPH method at the free surface. Therefore, an improved kernel gradient correction (KGC) technique and an improved continuous surface tension model are proposed to improve the accuracy of calculations at the free surface. The KGC technique can improve the accuracy of the kernel gradient in SPH approximation, however, the accuracy of KGC will decrease on the free surface. To improve the computational accuracy on the free surface, an improved KGC is developed. The surface tension model is significant for the numerical simulation of the SLM process, and an improved continuous surface tension (CSF) model is developed to enhance the stability and accuracy of surface tension modeling. In addition, a Gaussian heat source model and a latent heat model are introduced in the improved SPH model. The accuracy and effectiveness of the present SPH method for simulating the melting and melt pool flow of the SLM process are also verified by four numerical examples.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved CSF model and an improved KGC technique incorporated in SPH for modeling selective laser melting process\",\"authors\":\"\",\"doi\":\"10.1016/j.enganabound.2024.105876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selective laser melting (SLM) is an advanced additive manufacturing technology related to the powder bed fusion (PBF) process. Numerical simulation is the key means of realizing the shape and property control of components for additive manufacturing. In this paper, an improved smoothed particle hydrodynamics (SPH) method is proposed for the numerical simulation of the SLM process, focusing on the melt pool flow. The accuracy of calculations at the free surface is significant for modeling the SLM process and there are kernel function truncation errors of the SPH method at the free surface. Therefore, an improved kernel gradient correction (KGC) technique and an improved continuous surface tension model are proposed to improve the accuracy of calculations at the free surface. The KGC technique can improve the accuracy of the kernel gradient in SPH approximation, however, the accuracy of KGC will decrease on the free surface. To improve the computational accuracy on the free surface, an improved KGC is developed. The surface tension model is significant for the numerical simulation of the SLM process, and an improved continuous surface tension (CSF) model is developed to enhance the stability and accuracy of surface tension modeling. In addition, a Gaussian heat source model and a latent heat model are introduced in the improved SPH model. The accuracy and effectiveness of the present SPH method for simulating the melting and melt pool flow of the SLM process are also verified by four numerical examples.</p></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724003515\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724003515","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

选择性激光熔融(SLM)是一种与粉末床熔融(PBF)工艺相关的先进增材制造技术。数值模拟是实现增材制造部件形状和性能控制的关键手段。本文提出了一种改进的平滑粒子流体力学(SPH)方法,用于 SLM 工艺的数值模拟,重点关注熔池流动。自由表面的计算精度对 SLM 过程建模意义重大,而 SPH 方法在自由表面存在核函数截断误差。因此,我们提出了改进的核梯度修正(KGC)技术和改进的连续表面张力模型,以提高自由表面的计算精度。KGC 技术可以提高 SPH 近似中核梯度的精度,但在自由表面上,KGC 的精度会降低。为了提高自由表面的计算精度,我们开发了一种改进的 KGC。表面张力模型对 SLM 过程的数值模拟意义重大,为了提高表面张力建模的稳定性和精度,建立了改进的连续表面张力(CSF)模型。此外,改进的 SPH 模型还引入了高斯热源模型和潜热模型。本 SPH 方法在模拟 SLM 过程的熔化和熔池流动方面的准确性和有效性也通过四个数值实例得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved CSF model and an improved KGC technique incorporated in SPH for modeling selective laser melting process

Selective laser melting (SLM) is an advanced additive manufacturing technology related to the powder bed fusion (PBF) process. Numerical simulation is the key means of realizing the shape and property control of components for additive manufacturing. In this paper, an improved smoothed particle hydrodynamics (SPH) method is proposed for the numerical simulation of the SLM process, focusing on the melt pool flow. The accuracy of calculations at the free surface is significant for modeling the SLM process and there are kernel function truncation errors of the SPH method at the free surface. Therefore, an improved kernel gradient correction (KGC) technique and an improved continuous surface tension model are proposed to improve the accuracy of calculations at the free surface. The KGC technique can improve the accuracy of the kernel gradient in SPH approximation, however, the accuracy of KGC will decrease on the free surface. To improve the computational accuracy on the free surface, an improved KGC is developed. The surface tension model is significant for the numerical simulation of the SLM process, and an improved continuous surface tension (CSF) model is developed to enhance the stability and accuracy of surface tension modeling. In addition, a Gaussian heat source model and a latent heat model are introduced in the improved SPH model. The accuracy and effectiveness of the present SPH method for simulating the melting and melt pool flow of the SLM process are also verified by four numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信