{"title":"带有声学和分数边界条件、由源项和延迟项耦合的非线性波方程的全局存在性和一般衰减","authors":"Abdelbaki Choucha , Salah Boulaaras , Behzad Djafari-Rouhani , Rafik Guefaifia , Asma Alharbi","doi":"10.1016/j.rinam.2024.100476","DOIUrl":null,"url":null,"abstract":"<div><p>This work deal with global existence and general decay of solutions of a wave equation with acoustic and fractional boundary conditions coupling by source and delay terms. Under some hypotheses, we study the global existence of the solution and by suitable Lyapunov function the general decay result is proved.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100476"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000463/pdfft?md5=3fa82e2c38a50e43a044f945f8b298a1&pid=1-s2.0-S2590037424000463-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Global existence and general decay for a nonlinear wave equation with acoustic and fractional boundary conditions coupling by source and delay terms\",\"authors\":\"Abdelbaki Choucha , Salah Boulaaras , Behzad Djafari-Rouhani , Rafik Guefaifia , Asma Alharbi\",\"doi\":\"10.1016/j.rinam.2024.100476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work deal with global existence and general decay of solutions of a wave equation with acoustic and fractional boundary conditions coupling by source and delay terms. Under some hypotheses, we study the global existence of the solution and by suitable Lyapunov function the general decay result is proved.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100476\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000463/pdfft?md5=3fa82e2c38a50e43a044f945f8b298a1&pid=1-s2.0-S2590037424000463-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global existence and general decay for a nonlinear wave equation with acoustic and fractional boundary conditions coupling by source and delay terms
This work deal with global existence and general decay of solutions of a wave equation with acoustic and fractional boundary conditions coupling by source and delay terms. Under some hypotheses, we study the global existence of the solution and by suitable Lyapunov function the general decay result is proved.