{"title":"肌肉和肝脏样本中的 X 连锁肌管肌病和线粒体功能","authors":"Kenji Inoue, Takeo Kato, Eisuke Terasaki, Mariko Ishihara, Tatsuya Fujii, Yuko Aida, Kei Murayama","doi":"10.1055/s-0044-1788333","DOIUrl":null,"url":null,"abstract":"<p><p>X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy that commonly manifests with liver involvement. In most XLMTM cases, disease-causing variants have been identified in the myotubularin gene (<i>MTM1</i>) on chromosome Xq28, which encodes myotubularin protein (MTM1). The impairment of mitochondrial respiratory chain (MRC) enzyme activity in muscle has been observed in the XLMTM mouse model. Though several reports mentioned possible mechanisms of liver involvement in XLMTM patients and animal models, the precise underlying mechanisms remain unknown, and there is no report focused on mitochondrial functions in hepatocytes in XLMTM. We encountered two patients with XLMTM who had liver involvement. We measured MRC enzyme activities in two muscle biopsy specimens, and one liver specimen from our patients to investigate whether <i>MTM1</i> variants cause MRC dysfunction and whether mitochondrial disturbance is associated with organ dysfunction. MRC enzyme activities decreased in skeletal muscles but were normal in the liver. In our patients, the impaired MRC enzyme activity found in muscle is consistent with previously reported mechanisms that the loss of MTM1-desmin intermediate filament and MTM1-IMMT (a mitochondrial membrane protein) interaction led to the mitochondrial dysfunction. However, our study showed that liver involvement in XLMTM may not be associated with mitochondrial dysfunction.</p>","PeriodicalId":19421,"journal":{"name":"Neuropediatrics","volume":" ","pages":"51-55"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-Linked Myotubular Myopathy and Mitochondrial Function in Muscle and Liver Samples.\",\"authors\":\"Kenji Inoue, Takeo Kato, Eisuke Terasaki, Mariko Ishihara, Tatsuya Fujii, Yuko Aida, Kei Murayama\",\"doi\":\"10.1055/s-0044-1788333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy that commonly manifests with liver involvement. In most XLMTM cases, disease-causing variants have been identified in the myotubularin gene (<i>MTM1</i>) on chromosome Xq28, which encodes myotubularin protein (MTM1). The impairment of mitochondrial respiratory chain (MRC) enzyme activity in muscle has been observed in the XLMTM mouse model. Though several reports mentioned possible mechanisms of liver involvement in XLMTM patients and animal models, the precise underlying mechanisms remain unknown, and there is no report focused on mitochondrial functions in hepatocytes in XLMTM. We encountered two patients with XLMTM who had liver involvement. We measured MRC enzyme activities in two muscle biopsy specimens, and one liver specimen from our patients to investigate whether <i>MTM1</i> variants cause MRC dysfunction and whether mitochondrial disturbance is associated with organ dysfunction. MRC enzyme activities decreased in skeletal muscles but were normal in the liver. In our patients, the impaired MRC enzyme activity found in muscle is consistent with previously reported mechanisms that the loss of MTM1-desmin intermediate filament and MTM1-IMMT (a mitochondrial membrane protein) interaction led to the mitochondrial dysfunction. However, our study showed that liver involvement in XLMTM may not be associated with mitochondrial dysfunction.</p>\",\"PeriodicalId\":19421,\"journal\":{\"name\":\"Neuropediatrics\",\"volume\":\" \",\"pages\":\"51-55\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropediatrics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0044-1788333\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/s-0044-1788333","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
X-Linked Myotubular Myopathy and Mitochondrial Function in Muscle and Liver Samples.
X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy that commonly manifests with liver involvement. In most XLMTM cases, disease-causing variants have been identified in the myotubularin gene (MTM1) on chromosome Xq28, which encodes myotubularin protein (MTM1). The impairment of mitochondrial respiratory chain (MRC) enzyme activity in muscle has been observed in the XLMTM mouse model. Though several reports mentioned possible mechanisms of liver involvement in XLMTM patients and animal models, the precise underlying mechanisms remain unknown, and there is no report focused on mitochondrial functions in hepatocytes in XLMTM. We encountered two patients with XLMTM who had liver involvement. We measured MRC enzyme activities in two muscle biopsy specimens, and one liver specimen from our patients to investigate whether MTM1 variants cause MRC dysfunction and whether mitochondrial disturbance is associated with organ dysfunction. MRC enzyme activities decreased in skeletal muscles but were normal in the liver. In our patients, the impaired MRC enzyme activity found in muscle is consistent with previously reported mechanisms that the loss of MTM1-desmin intermediate filament and MTM1-IMMT (a mitochondrial membrane protein) interaction led to the mitochondrial dysfunction. However, our study showed that liver involvement in XLMTM may not be associated with mitochondrial dysfunction.
期刊介绍:
For key insights into today''s practice of pediatric neurology, Neuropediatrics is the worldwide journal of choice. Original articles, case reports and panel discussions are the distinctive features of a journal that always keeps abreast of current developments and trends - the reason it has developed into an internationally recognized forum for specialists throughout the world.
Pediatricians, neurologists, neurosurgeons, and neurobiologists will find it essential reading.