{"title":"拟南芥 DWARF27 基因编码一种全反式-/9-顺式-beta-胡萝卜素异构酶,该异构酶通过绞股蓝内酯控制拟南芥的植物分枝。","authors":"Xiaomin Ren, Qian Ai, Zhen Li, Qiao Zhao, Lan Yun","doi":"10.1093/g3journal/jkae147","DOIUrl":null,"url":null,"abstract":"<p><p>Strigolactones (SLs), carotenoid-derived plant hormones, govern the growth and development of both monocotyledonous and dicotyledonous plants. DWARF27 (D27), a plastid-targeted protein located at the initiation site of the core pathway in SL synthesis, plays a crucial role in regulating plant tillering (branching). In rice (Oryza sativa) and wheat (Triticum aestivum), OsD27 and TaD27-B proteins modulate the number of plant tillers by participating in SL biosynthesis. Similarly, AtD27 in Arabidopsis thaliana is required for SL production and has a significant impact on phenotypic changes related to branching. At the same time, TaD27 in wheat has been confirmed as a functional orthologue of AtD27 in Arabidopsis, and both Psathyrostachys juncea and wheat belong to the Triticeae, so we speculate that PjD27 gene may also have the same function as AtD27 in Arabidopsis. In this study, we initially screened the PjD27 gene significantly associated with tillering regulation through transcriptome data analysis and subsequently validated its expression levels using qRT-PCR analysis. Furthermore, we conducted phylogenetic analysis using amino acid sequences from 41 species, including P. juncea, to identify closely related species of P. juncea. Here, we analyze the conservation of D27 protein among P. juncea, rice, wheat, and Arabidopsis and provide preliminary evidence suggesting that PjD27 protein is an orthologue of D27 protein in Arabidopsis. Through reverse genetics, we demonstrate the crucial role of PjD27 in regulating plant branching, establishing it as a functional orthologue of D27 in Arabidopsis. Furthermore, following transient expression in tobacco (Nicotiana tabacum), we demonstrate that the subcellular location of the PjD27 protein is consistent with the cellular location of TaD27-B in wheat. Quantitative analysis of SLs shows that PjD27 is a key gene regulating tillering (branching) by participating in SL biosynthesis. By elucidating the function of the PjD27 gene, our findings provide valuable genetic resources for new germplasm creation and improving grain yield in P. juncea.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373637/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Psathyrostachys juncea DWARF27 gene encodes an all-trans-/9-cis-beta-carotene isomerase in the control of plant branches in Arabidopsis thaliana by strigolactones.\",\"authors\":\"Xiaomin Ren, Qian Ai, Zhen Li, Qiao Zhao, Lan Yun\",\"doi\":\"10.1093/g3journal/jkae147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Strigolactones (SLs), carotenoid-derived plant hormones, govern the growth and development of both monocotyledonous and dicotyledonous plants. DWARF27 (D27), a plastid-targeted protein located at the initiation site of the core pathway in SL synthesis, plays a crucial role in regulating plant tillering (branching). In rice (Oryza sativa) and wheat (Triticum aestivum), OsD27 and TaD27-B proteins modulate the number of plant tillers by participating in SL biosynthesis. Similarly, AtD27 in Arabidopsis thaliana is required for SL production and has a significant impact on phenotypic changes related to branching. At the same time, TaD27 in wheat has been confirmed as a functional orthologue of AtD27 in Arabidopsis, and both Psathyrostachys juncea and wheat belong to the Triticeae, so we speculate that PjD27 gene may also have the same function as AtD27 in Arabidopsis. In this study, we initially screened the PjD27 gene significantly associated with tillering regulation through transcriptome data analysis and subsequently validated its expression levels using qRT-PCR analysis. Furthermore, we conducted phylogenetic analysis using amino acid sequences from 41 species, including P. juncea, to identify closely related species of P. juncea. Here, we analyze the conservation of D27 protein among P. juncea, rice, wheat, and Arabidopsis and provide preliminary evidence suggesting that PjD27 protein is an orthologue of D27 protein in Arabidopsis. Through reverse genetics, we demonstrate the crucial role of PjD27 in regulating plant branching, establishing it as a functional orthologue of D27 in Arabidopsis. Furthermore, following transient expression in tobacco (Nicotiana tabacum), we demonstrate that the subcellular location of the PjD27 protein is consistent with the cellular location of TaD27-B in wheat. Quantitative analysis of SLs shows that PjD27 is a key gene regulating tillering (branching) by participating in SL biosynthesis. By elucidating the function of the PjD27 gene, our findings provide valuable genetic resources for new germplasm creation and improving grain yield in P. juncea.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae147\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae147","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The Psathyrostachys juncea DWARF27 gene encodes an all-trans-/9-cis-beta-carotene isomerase in the control of plant branches in Arabidopsis thaliana by strigolactones.
Strigolactones (SLs), carotenoid-derived plant hormones, govern the growth and development of both monocotyledonous and dicotyledonous plants. DWARF27 (D27), a plastid-targeted protein located at the initiation site of the core pathway in SL synthesis, plays a crucial role in regulating plant tillering (branching). In rice (Oryza sativa) and wheat (Triticum aestivum), OsD27 and TaD27-B proteins modulate the number of plant tillers by participating in SL biosynthesis. Similarly, AtD27 in Arabidopsis thaliana is required for SL production and has a significant impact on phenotypic changes related to branching. At the same time, TaD27 in wheat has been confirmed as a functional orthologue of AtD27 in Arabidopsis, and both Psathyrostachys juncea and wheat belong to the Triticeae, so we speculate that PjD27 gene may also have the same function as AtD27 in Arabidopsis. In this study, we initially screened the PjD27 gene significantly associated with tillering regulation through transcriptome data analysis and subsequently validated its expression levels using qRT-PCR analysis. Furthermore, we conducted phylogenetic analysis using amino acid sequences from 41 species, including P. juncea, to identify closely related species of P. juncea. Here, we analyze the conservation of D27 protein among P. juncea, rice, wheat, and Arabidopsis and provide preliminary evidence suggesting that PjD27 protein is an orthologue of D27 protein in Arabidopsis. Through reverse genetics, we demonstrate the crucial role of PjD27 in regulating plant branching, establishing it as a functional orthologue of D27 in Arabidopsis. Furthermore, following transient expression in tobacco (Nicotiana tabacum), we demonstrate that the subcellular location of the PjD27 protein is consistent with the cellular location of TaD27-B in wheat. Quantitative analysis of SLs shows that PjD27 is a key gene regulating tillering (branching) by participating in SL biosynthesis. By elucidating the function of the PjD27 gene, our findings provide valuable genetic resources for new germplasm creation and improving grain yield in P. juncea.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.