基于反义寡核苷酸的定制疗法,用于治疗神经丝相关的夏科-玛丽-牙病。

IF 10.6 1区 医学 Q1 CLINICAL NEUROLOGY
Brain Pub Date : 2024-12-03 DOI:10.1093/brain/awae225
Jessica Medina, Adriana Rebelo, Matt C Danzi, Elizabeth H Jacobs, Isaac R L Xu, Kathleen P Ahrens, Sitong Chen, Jacquelyn Raposo, Christopher Yanick, Stephan Zuchner, Mario A Saporta
{"title":"基于反义寡核苷酸的定制疗法,用于治疗神经丝相关的夏科-玛丽-牙病。","authors":"Jessica Medina, Adriana Rebelo, Matt C Danzi, Elizabeth H Jacobs, Isaac R L Xu, Kathleen P Ahrens, Sitong Chen, Jacquelyn Raposo, Christopher Yanick, Stephan Zuchner, Mario A Saporta","doi":"10.1093/brain/awae225","DOIUrl":null,"url":null,"abstract":"<p><p>DNA-based therapeutics have emerged as a revolutionary approach for addressing the treatment gap in rare inherited conditions by targeting the fundamental genetic causes of disease. Charcot-Marie-Tooth (CMT) disease, a group of inherited neuropathies, represents one of the most prevalent Mendelian disease groups in neurology and is characterized by diverse genetic aetiology. Axonal forms of CMT, known as CMT2, are caused by dominant mutations in >30 different genes that lead to degeneration of lower motor neuron axons. Recent advances in antisense oligonucleotide therapeutics have shown promise in targeting neurodegenerative disorders. Here, we elucidate pathomechanistic changes contributing to variant specific molecular phenotypes in CMT2E, caused by a single nucleotide substitution (p.N98S) in the neurofilament light chain gene (NEFL). We used a patient-derived induced pluripotent stem cell-induced motor neuron model that recapitulates several cellular and biomarker phenotypes associated with CMT2E. Using an antisense oligonucleotide treatment strategy targeting a heterozygous gain-of-function variant, we aimed to resolve molecular phenotypic changes observed in the CMT2E p.N98S subtype. To determine the therapeutic potential of antisense oligonucleotide, we applied our treatment strategy in induced pluripotent stem cell-derived motor neurons and used both established and new biomarkers of peripheral nervous system axonal degeneration. Our findings demonstrated a significant decrease in clinically relevant biomarkers of axonal degeneration, presenting the first clinically viable genetic therapeutic for CMT2E. Similar strategies could be used to develop precision medicine approaches for otherwise untreatable gain-of-function inherited disorders.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":" ","pages":"4227-4239"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629702/pdf/","citationCount":"0","resultStr":"{\"title\":\"Customized antisense oligonucleotide-based therapy for neurofilament-associated Charcot-Marie-Tooth disease.\",\"authors\":\"Jessica Medina, Adriana Rebelo, Matt C Danzi, Elizabeth H Jacobs, Isaac R L Xu, Kathleen P Ahrens, Sitong Chen, Jacquelyn Raposo, Christopher Yanick, Stephan Zuchner, Mario A Saporta\",\"doi\":\"10.1093/brain/awae225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA-based therapeutics have emerged as a revolutionary approach for addressing the treatment gap in rare inherited conditions by targeting the fundamental genetic causes of disease. Charcot-Marie-Tooth (CMT) disease, a group of inherited neuropathies, represents one of the most prevalent Mendelian disease groups in neurology and is characterized by diverse genetic aetiology. Axonal forms of CMT, known as CMT2, are caused by dominant mutations in >30 different genes that lead to degeneration of lower motor neuron axons. Recent advances in antisense oligonucleotide therapeutics have shown promise in targeting neurodegenerative disorders. Here, we elucidate pathomechanistic changes contributing to variant specific molecular phenotypes in CMT2E, caused by a single nucleotide substitution (p.N98S) in the neurofilament light chain gene (NEFL). We used a patient-derived induced pluripotent stem cell-induced motor neuron model that recapitulates several cellular and biomarker phenotypes associated with CMT2E. Using an antisense oligonucleotide treatment strategy targeting a heterozygous gain-of-function variant, we aimed to resolve molecular phenotypic changes observed in the CMT2E p.N98S subtype. To determine the therapeutic potential of antisense oligonucleotide, we applied our treatment strategy in induced pluripotent stem cell-derived motor neurons and used both established and new biomarkers of peripheral nervous system axonal degeneration. Our findings demonstrated a significant decrease in clinically relevant biomarkers of axonal degeneration, presenting the first clinically viable genetic therapeutic for CMT2E. Similar strategies could be used to develop precision medicine approaches for otherwise untreatable gain-of-function inherited disorders.</p>\",\"PeriodicalId\":9063,\"journal\":{\"name\":\"Brain\",\"volume\":\" \",\"pages\":\"4227-4239\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629702/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/brain/awae225\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae225","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

针对疾病的基本遗传原因,DNA 疗法已成为解决罕见遗传性疾病治疗缺口的革命性方法。Charcot-Marie-Tooth (CMT) 病是一组遗传性神经病,是神经病学中最常见的孟德尔疾病群之一,具有遗传病因多样的特点。轴突型 CMT,即 CMT2,是由 30 多种不同基因的显性突变引起的,导致下运动神经元轴突变性。反义寡核苷酸(ASO)疗法的最新进展显示了针对神经退行性疾病的前景。在这里,我们阐明了由神经丝蛋白轻链基因(NEFL)单核苷酸置换(p.N98S)引起的 CMT2E 变异特异性分子表型的病理机制变化。我们使用了患者多能干细胞(iPSC)诱导的运动神经元模型,该模型再现了与 CMT2E 相关的几种细胞和生物标志物表型。我们采用针对杂合功能增益变体的ASO治疗策略,旨在解决在CMT2E p.N98S亚型中观察到的分子表型变化。为了确定 ASO 的治疗潜力,我们在 iPSC 衍生的运动神经元中采用了我们的治疗策略,并使用了外周神经系统轴突变性的既有和新型生物标记物。我们的研究结果表明,与临床相关的轴突变性生物标志物明显减少,这是首个针对 CMT2E 的临床可行的基因疗法。类似的策略也可用于开发精准医疗方法,治疗其他无法治疗的功能增益遗传性疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Customized antisense oligonucleotide-based therapy for neurofilament-associated Charcot-Marie-Tooth disease.

DNA-based therapeutics have emerged as a revolutionary approach for addressing the treatment gap in rare inherited conditions by targeting the fundamental genetic causes of disease. Charcot-Marie-Tooth (CMT) disease, a group of inherited neuropathies, represents one of the most prevalent Mendelian disease groups in neurology and is characterized by diverse genetic aetiology. Axonal forms of CMT, known as CMT2, are caused by dominant mutations in >30 different genes that lead to degeneration of lower motor neuron axons. Recent advances in antisense oligonucleotide therapeutics have shown promise in targeting neurodegenerative disorders. Here, we elucidate pathomechanistic changes contributing to variant specific molecular phenotypes in CMT2E, caused by a single nucleotide substitution (p.N98S) in the neurofilament light chain gene (NEFL). We used a patient-derived induced pluripotent stem cell-induced motor neuron model that recapitulates several cellular and biomarker phenotypes associated with CMT2E. Using an antisense oligonucleotide treatment strategy targeting a heterozygous gain-of-function variant, we aimed to resolve molecular phenotypic changes observed in the CMT2E p.N98S subtype. To determine the therapeutic potential of antisense oligonucleotide, we applied our treatment strategy in induced pluripotent stem cell-derived motor neurons and used both established and new biomarkers of peripheral nervous system axonal degeneration. Our findings demonstrated a significant decrease in clinically relevant biomarkers of axonal degeneration, presenting the first clinically viable genetic therapeutic for CMT2E. Similar strategies could be used to develop precision medicine approaches for otherwise untreatable gain-of-function inherited disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain
Brain 医学-临床神经学
CiteScore
20.30
自引率
4.10%
发文量
458
审稿时长
3-6 weeks
期刊介绍: Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信