Impreet Kaur, Pinky Juneja, Rajnish Tiwari, Ashwini Vasudevan, Akash K Mourya, Michael Trauner, Shiv K Sarin, Dinesh M Tripathi, Savneet Kaur
{"title":"门静脉血液中的次级胆汁酸有助于肝部分切除术大鼠模型的肝脏再生。","authors":"Impreet Kaur, Pinky Juneja, Rajnish Tiwari, Ashwini Vasudevan, Akash K Mourya, Michael Trauner, Shiv K Sarin, Dinesh M Tripathi, Savneet Kaur","doi":"10.1152/ajpgi.00301.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Gut metabolites via the portal vein affect several liver functions, including regeneration. Here, we investigated gut microbiota-derived metabolites in portal and peripheral serum during liver regeneration. We developed rat models of 70% partial hepatectomy (PHx) with and without prior gut microbiota modulation by three-week antibiotic (Abx) treatment. Sham without Abx were used as controls and compared to sham with Abx. Liver regeneration at day 2 following PHx was assessed by expression of proliferating cell nuclear antigen (PCNA) protein in liver tissues and cyclin genes in primary hepatocytes. High pressure liquid chromatography-mass spectrometry (HPLC-MS) based portal and peripheral venous serum metabolomics was performed to identify differentially altered metabolites (DAMs). Compared to controls, rat livers at day 2 post-PHx showed significant upregulation in the average number of PCNA-positive cells, which positively correlated with the expression of cell cycle genes in hepatocytes. In Abx-treated PHx, we observed reduced PCNA-positivity and downregulation in gene expression of various cyclins in hepatocytes compared to PHx. We identified 224 DAMs between controls vs PHx and 189 DAMs between Abx-treated PHx vs PHx in portal serum. Many common DAMs showed opposite expression trends in PHx vs controls and then Abx+PHx vs PHx in portal serum, such as sphingosine-1-phosphate and deoxycholic acid. <i>In vitro</i> studies with deoxycholic acid demonstrated that it enhanced the viability and proliferation of primary hepatocytes and hepatocyte organoids. The study underscores the critical role of deoxycholic acid in portal blood in enhancing hepatocyte proliferation and subsequently, liver regeneration.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secondary bile acids in portal blood contribute to liver regeneration in a rat model of partial hepatectomy.\",\"authors\":\"Impreet Kaur, Pinky Juneja, Rajnish Tiwari, Ashwini Vasudevan, Akash K Mourya, Michael Trauner, Shiv K Sarin, Dinesh M Tripathi, Savneet Kaur\",\"doi\":\"10.1152/ajpgi.00301.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gut metabolites via the portal vein affect several liver functions, including regeneration. Here, we investigated gut microbiota-derived metabolites in portal and peripheral serum during liver regeneration. We developed rat models of 70% partial hepatectomy (PHx) with and without prior gut microbiota modulation by three-week antibiotic (Abx) treatment. Sham without Abx were used as controls and compared to sham with Abx. Liver regeneration at day 2 following PHx was assessed by expression of proliferating cell nuclear antigen (PCNA) protein in liver tissues and cyclin genes in primary hepatocytes. High pressure liquid chromatography-mass spectrometry (HPLC-MS) based portal and peripheral venous serum metabolomics was performed to identify differentially altered metabolites (DAMs). Compared to controls, rat livers at day 2 post-PHx showed significant upregulation in the average number of PCNA-positive cells, which positively correlated with the expression of cell cycle genes in hepatocytes. In Abx-treated PHx, we observed reduced PCNA-positivity and downregulation in gene expression of various cyclins in hepatocytes compared to PHx. We identified 224 DAMs between controls vs PHx and 189 DAMs between Abx-treated PHx vs PHx in portal serum. Many common DAMs showed opposite expression trends in PHx vs controls and then Abx+PHx vs PHx in portal serum, such as sphingosine-1-phosphate and deoxycholic acid. <i>In vitro</i> studies with deoxycholic acid demonstrated that it enhanced the viability and proliferation of primary hepatocytes and hepatocyte organoids. The study underscores the critical role of deoxycholic acid in portal blood in enhancing hepatocyte proliferation and subsequently, liver regeneration.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00301.2023\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00301.2023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Secondary bile acids in portal blood contribute to liver regeneration in a rat model of partial hepatectomy.
Gut metabolites via the portal vein affect several liver functions, including regeneration. Here, we investigated gut microbiota-derived metabolites in portal and peripheral serum during liver regeneration. We developed rat models of 70% partial hepatectomy (PHx) with and without prior gut microbiota modulation by three-week antibiotic (Abx) treatment. Sham without Abx were used as controls and compared to sham with Abx. Liver regeneration at day 2 following PHx was assessed by expression of proliferating cell nuclear antigen (PCNA) protein in liver tissues and cyclin genes in primary hepatocytes. High pressure liquid chromatography-mass spectrometry (HPLC-MS) based portal and peripheral venous serum metabolomics was performed to identify differentially altered metabolites (DAMs). Compared to controls, rat livers at day 2 post-PHx showed significant upregulation in the average number of PCNA-positive cells, which positively correlated with the expression of cell cycle genes in hepatocytes. In Abx-treated PHx, we observed reduced PCNA-positivity and downregulation in gene expression of various cyclins in hepatocytes compared to PHx. We identified 224 DAMs between controls vs PHx and 189 DAMs between Abx-treated PHx vs PHx in portal serum. Many common DAMs showed opposite expression trends in PHx vs controls and then Abx+PHx vs PHx in portal serum, such as sphingosine-1-phosphate and deoxycholic acid. In vitro studies with deoxycholic acid demonstrated that it enhanced the viability and proliferation of primary hepatocytes and hepatocyte organoids. The study underscores the critical role of deoxycholic acid in portal blood in enhancing hepatocyte proliferation and subsequently, liver regeneration.
期刊介绍:
The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.