基于多源遥感数据的中尺度涡温异常剖面智能反演

IF 8.6 Q1 REMOTE SENSING
Yingying Duan , Hao Zhang , Chunyong Ma
{"title":"基于多源遥感数据的中尺度涡温异常剖面智能反演","authors":"Yingying Duan ,&nbsp;Hao Zhang ,&nbsp;Chunyong Ma","doi":"10.1016/j.jag.2024.104025","DOIUrl":null,"url":null,"abstract":"<div><p>Inversion of the underwater temperature anomaly of mesoscale eddies from sea surface remote sensing data plays an important role in understanding the three-dimensional structure of eddies. In this article, a neural network structure, named the eddy temperature anomaly inversion network (EddyTAINet), is proposed and established to invert the vertical temperature anomalies of eddies using 20-year (2002–2022) Argo profiles and multi-source remote sensing data in the northwestern Pacific Ocean. Vertical temperature anomaly profiles with 45 depth levels ranging from 10 to 1000 m are derived as the outputs of the inversion networks. The input feature sequences are extracted from the mesoscale eddy product based on sea level anomaly (SLA) data, and sea surface temperature (SST) data are also introduced into the proposed network structure to improve its accuracy. For the problem of inconsistent sizes of the 2D matrix SST data corresponding to mesoscale eddies, the spatial pyramid pooling (SPP) network module is introduced, which allows different sizes of SST data to be simply convolved and then subjected to hierarchical feature extraction to obtain fixed-size feature vectors. Validation and comparison of the network structure are performed and show the improved performance of EddyTAINet. The average root mean square error (RMSE) and mean absolute error (MAE) are 0.63 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span>/0.66 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span> and 0.48 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span>/0.51 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span> for cyclonic and anticyclonic eddies, respectively, which are more than 20% lower than the results of the network using the SLA-based data.</p></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"132 ","pages":"Article 104025"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569843224003790/pdfft?md5=b3673b630d37d8c84f30dde3efc48adb&pid=1-s2.0-S1569843224003790-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intelligent inversion of mesoscale eddy temperature anomaly profiles based on multi-source remote sensing data\",\"authors\":\"Yingying Duan ,&nbsp;Hao Zhang ,&nbsp;Chunyong Ma\",\"doi\":\"10.1016/j.jag.2024.104025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inversion of the underwater temperature anomaly of mesoscale eddies from sea surface remote sensing data plays an important role in understanding the three-dimensional structure of eddies. In this article, a neural network structure, named the eddy temperature anomaly inversion network (EddyTAINet), is proposed and established to invert the vertical temperature anomalies of eddies using 20-year (2002–2022) Argo profiles and multi-source remote sensing data in the northwestern Pacific Ocean. Vertical temperature anomaly profiles with 45 depth levels ranging from 10 to 1000 m are derived as the outputs of the inversion networks. The input feature sequences are extracted from the mesoscale eddy product based on sea level anomaly (SLA) data, and sea surface temperature (SST) data are also introduced into the proposed network structure to improve its accuracy. For the problem of inconsistent sizes of the 2D matrix SST data corresponding to mesoscale eddies, the spatial pyramid pooling (SPP) network module is introduced, which allows different sizes of SST data to be simply convolved and then subjected to hierarchical feature extraction to obtain fixed-size feature vectors. Validation and comparison of the network structure are performed and show the improved performance of EddyTAINet. The average root mean square error (RMSE) and mean absolute error (MAE) are 0.63 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span>/0.66 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span> and 0.48 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span>/0.51 <span><math><mrow><mo>°</mo><mi>C</mi></mrow></math></span> for cyclonic and anticyclonic eddies, respectively, which are more than 20% lower than the results of the network using the SLA-based data.</p></div>\",\"PeriodicalId\":73423,\"journal\":{\"name\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"volume\":\"132 \",\"pages\":\"Article 104025\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1569843224003790/pdfft?md5=b3673b630d37d8c84f30dde3efc48adb&pid=1-s2.0-S1569843224003790-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied earth observation and geoinformation : ITC journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569843224003790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224003790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

从海面遥感数据反演中尺度漩涡的水下温度异常对了解漩涡的三维结构具有重要作用。本文提出并建立了一种神经网络结构,命名为漩涡温度异常反演网络(EddyTAINet),利用西北太平洋20年(2002-2022)Argo剖面和多源遥感数据反演漩涡的垂直温度异常。反演网络的输出结果是 45 个深度级别(从 10 米到 1000 米)的垂直温度异常剖面图。输入特征序列是从基于海平面异常(SLA)数据的中尺度涡旋产品中提取的,海面温度(SST)数据也被引入到拟议的网络结构中,以提高其精度。针对中尺度漩涡对应的二维矩阵 SST 数据大小不一致的问题,引入了空间金字塔池化(SPP)网络模块,将不同大小的 SST 数据进行简单卷积,然后进行分层特征提取,得到固定大小的特征向量。对网络结构进行了验证和比较,结果表明 EddyTAINet 的性能有所提高。对于旋涡和反气旋涡,平均均方根误差(RMSE)和平均绝对误差(MAE)分别为 0.63 /0.66 和 0.48 /0.51,比使用基于 SLA 数据的网络结果低 20% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent inversion of mesoscale eddy temperature anomaly profiles based on multi-source remote sensing data

Inversion of the underwater temperature anomaly of mesoscale eddies from sea surface remote sensing data plays an important role in understanding the three-dimensional structure of eddies. In this article, a neural network structure, named the eddy temperature anomaly inversion network (EddyTAINet), is proposed and established to invert the vertical temperature anomalies of eddies using 20-year (2002–2022) Argo profiles and multi-source remote sensing data in the northwestern Pacific Ocean. Vertical temperature anomaly profiles with 45 depth levels ranging from 10 to 1000 m are derived as the outputs of the inversion networks. The input feature sequences are extracted from the mesoscale eddy product based on sea level anomaly (SLA) data, and sea surface temperature (SST) data are also introduced into the proposed network structure to improve its accuracy. For the problem of inconsistent sizes of the 2D matrix SST data corresponding to mesoscale eddies, the spatial pyramid pooling (SPP) network module is introduced, which allows different sizes of SST data to be simply convolved and then subjected to hierarchical feature extraction to obtain fixed-size feature vectors. Validation and comparison of the network structure are performed and show the improved performance of EddyTAINet. The average root mean square error (RMSE) and mean absolute error (MAE) are 0.63 °C/0.66 °C and 0.48 °C/0.51 °C for cyclonic and anticyclonic eddies, respectively, which are more than 20% lower than the results of the network using the SLA-based data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信