Ehsan Masoudi, Mitra Soleimani, Giti Zarinfard, Mansour Homayoun, Mohammad Bakhtiari
{"title":"壳聚糖负载 JQ1 纳米粒子对 OVCAR-3 细胞周期和凋亡相关基因表达的影响","authors":"Ehsan Masoudi, Mitra Soleimani, Giti Zarinfard, Mansour Homayoun, Mohammad Bakhtiari","doi":"10.4103/1735-5362.394820","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Ovarian cancer is the deadliest gynecological cancer. Bromodomain and extra terminal domain (BET) proteins play major roles in the regulation of gene expression at the epigenetic level. Jun Qi (JQ1) is a potent inhibitor of BET proteins. Regarding the short half-life and poor pharmacokinetic profile, JQ1 was loaded into newly developed nano-carriers. Chitosan nanoparticles are one of the best and potential polymers in cancer treatment. The present study aimed to build chitosan-JQl nanoparticles (Ch-J-NPs), treat OVCAR-3 cells with Ch-J-NPs, and evaluate the effects of these nanoparticles on cell cycle and apoptosis-associated genes.</p><p><strong>Experimental approach: </strong>Ch-J-NPs were synthesized and characterized. The size and morphology of Ch-J-NPs were defined by DLS and FE-SEM techniques. OVCAR-3 cells were cultured and treated with Ch-J-NPs. Then, IC<sub>50</sub> was measured using MTT assay. The groups were defined and cells were treated with IC<sub>50</sub> concentration of Ch-J-NPs, for 48 h. Finally, cells in different groups were assessed for the expression of genes of interest using quantitative RT-PCR.</p><p><strong>Findings/results: </strong>IC<sub>50</sub> values for Ch-J-NPs were 5.625 μg/mL. RT-PCR results demonstrated that the expression of genes associated with cell cycle activity (c-MYC, hTERT, CDK1, CDK4, and CDK6) was significantly decreased following treatment of cancer cells with Ch-J-NPs. Conversely, the expression of caspase-3, and caspase-9 significantly increased. BAX (pro-apoptotic) to BCL2 (anti-apoptotic) expression ratio, also increased significantly after treatment of cells with Ch-J-NPs.</p><p><strong>Conclusion and implications: </strong>Ch-J-NPs showed significant anti-cell cyclic and apoptotic effects on OVCAR-3 cells.</p>","PeriodicalId":21075,"journal":{"name":"Research in Pharmaceutical Sciences","volume":"19 1","pages":"53-63"},"PeriodicalIF":2.1000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244706/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effects of chitosan-loaded JQ1 nanoparticles on OVCAR-3 cell cycle and apoptosis-related gene expression.\",\"authors\":\"Ehsan Masoudi, Mitra Soleimani, Giti Zarinfard, Mansour Homayoun, Mohammad Bakhtiari\",\"doi\":\"10.4103/1735-5362.394820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Ovarian cancer is the deadliest gynecological cancer. Bromodomain and extra terminal domain (BET) proteins play major roles in the regulation of gene expression at the epigenetic level. Jun Qi (JQ1) is a potent inhibitor of BET proteins. Regarding the short half-life and poor pharmacokinetic profile, JQ1 was loaded into newly developed nano-carriers. Chitosan nanoparticles are one of the best and potential polymers in cancer treatment. The present study aimed to build chitosan-JQl nanoparticles (Ch-J-NPs), treat OVCAR-3 cells with Ch-J-NPs, and evaluate the effects of these nanoparticles on cell cycle and apoptosis-associated genes.</p><p><strong>Experimental approach: </strong>Ch-J-NPs were synthesized and characterized. The size and morphology of Ch-J-NPs were defined by DLS and FE-SEM techniques. OVCAR-3 cells were cultured and treated with Ch-J-NPs. Then, IC<sub>50</sub> was measured using MTT assay. The groups were defined and cells were treated with IC<sub>50</sub> concentration of Ch-J-NPs, for 48 h. Finally, cells in different groups were assessed for the expression of genes of interest using quantitative RT-PCR.</p><p><strong>Findings/results: </strong>IC<sub>50</sub> values for Ch-J-NPs were 5.625 μg/mL. RT-PCR results demonstrated that the expression of genes associated with cell cycle activity (c-MYC, hTERT, CDK1, CDK4, and CDK6) was significantly decreased following treatment of cancer cells with Ch-J-NPs. Conversely, the expression of caspase-3, and caspase-9 significantly increased. BAX (pro-apoptotic) to BCL2 (anti-apoptotic) expression ratio, also increased significantly after treatment of cells with Ch-J-NPs.</p><p><strong>Conclusion and implications: </strong>Ch-J-NPs showed significant anti-cell cyclic and apoptotic effects on OVCAR-3 cells.</p>\",\"PeriodicalId\":21075,\"journal\":{\"name\":\"Research in Pharmaceutical Sciences\",\"volume\":\"19 1\",\"pages\":\"53-63\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/1735-5362.394820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/1735-5362.394820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
The effects of chitosan-loaded JQ1 nanoparticles on OVCAR-3 cell cycle and apoptosis-related gene expression.
Background and purpose: Ovarian cancer is the deadliest gynecological cancer. Bromodomain and extra terminal domain (BET) proteins play major roles in the regulation of gene expression at the epigenetic level. Jun Qi (JQ1) is a potent inhibitor of BET proteins. Regarding the short half-life and poor pharmacokinetic profile, JQ1 was loaded into newly developed nano-carriers. Chitosan nanoparticles are one of the best and potential polymers in cancer treatment. The present study aimed to build chitosan-JQl nanoparticles (Ch-J-NPs), treat OVCAR-3 cells with Ch-J-NPs, and evaluate the effects of these nanoparticles on cell cycle and apoptosis-associated genes.
Experimental approach: Ch-J-NPs were synthesized and characterized. The size and morphology of Ch-J-NPs were defined by DLS and FE-SEM techniques. OVCAR-3 cells were cultured and treated with Ch-J-NPs. Then, IC50 was measured using MTT assay. The groups were defined and cells were treated with IC50 concentration of Ch-J-NPs, for 48 h. Finally, cells in different groups were assessed for the expression of genes of interest using quantitative RT-PCR.
Findings/results: IC50 values for Ch-J-NPs were 5.625 μg/mL. RT-PCR results demonstrated that the expression of genes associated with cell cycle activity (c-MYC, hTERT, CDK1, CDK4, and CDK6) was significantly decreased following treatment of cancer cells with Ch-J-NPs. Conversely, the expression of caspase-3, and caspase-9 significantly increased. BAX (pro-apoptotic) to BCL2 (anti-apoptotic) expression ratio, also increased significantly after treatment of cells with Ch-J-NPs.
Conclusion and implications: Ch-J-NPs showed significant anti-cell cyclic and apoptotic effects on OVCAR-3 cells.
期刊介绍:
Research in Pharmaceutical Sciences (RPS) is included in Thomson Reuters ESCI Web of Science (searchable at WoS master journal list), indexed with PubMed and PubMed Central and abstracted in the Elsevier Bibliographic Databases. Databases include Scopus, EMBASE, EMCare, EMBiology and Elsevier BIOBASE. It is also indexed in several specialized databases including Scientific Information Database (SID), Google Scholar, Iran Medex, Magiran, Index Copernicus (IC) and Islamic World Science Citation Center (ISC).