{"title":"多药理学预测:全面预测小分子选择性以降低药物研发风险的漫长之路。","authors":"Leticia Manen-Freixa, Albert A Antolin","doi":"10.1080/17460441.2024.2376643","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology.</p><p><strong>Areas covered: </strong>This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples.</p><p><strong>Expert opinion: </strong>Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1043-1069"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery.\",\"authors\":\"Leticia Manen-Freixa, Albert A Antolin\",\"doi\":\"10.1080/17460441.2024.2376643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology.</p><p><strong>Areas covered: </strong>This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples.</p><p><strong>Expert opinion: </strong>Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":\" \",\"pages\":\"1043-1069\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2024.2376643\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2024.2376643","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery.
Introduction: Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology.
Areas covered: This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples.
Expert opinion: Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.