Victor Marchenkov , Alexey Surin , Victor Ugarov , Nina Kotova , Natalia Marchenko , Alexey Fedorov , Alexei Finkelstein , Vladimir Filimonov , Gennady Semisotnov
{"title":"共合子蛋白 GroES 亚基交换与时间、pH 值、蛋白质浓度和尿素有关。","authors":"Victor Marchenkov , Alexey Surin , Victor Ugarov , Nina Kotova , Natalia Marchenko , Alexey Fedorov , Alexei Finkelstein , Vladimir Filimonov , Gennady Semisotnov","doi":"10.1016/j.bbapap.2024.141032","DOIUrl":null,"url":null,"abstract":"<div><p>The discovery of a subunit exchange in some oligomeric proteins, implying short-term dissociation of their oligomeric structure, requires new insights into the role of the quaternary structure in oligomeric protein stability and function. Here we demonstrate the effect of pH, protein concentration, and urea on the efficiency of GroES heptamer (GroES<sub>7</sub>) subunit exchange. A mixture of equimolar amounts of wild-type (WT) GroES<sub>7</sub> and its Ala97Cys mutant modified with iodoacetic acid (97-carboxymethyl cysteine or CMC-GroES<sub>7</sub>) was incubated in various conditions and subjected to isoelectric focusing (IEF) in polyacrylamide gel. For each sample, there are eight Coomassie-stained electrophoretic bands showing different charges that result from a different number of included mutant subunits, each carrying an additional negative charge. The intensities of these bands serve to analyze the protein subunit exchange. The protein stability is evaluated using the transverse urea gradient gel electrophoresis (TUGGE). At pH 8.0, the intensities of the initial bands corresponding to WT-GroES<sub>7</sub> and CMC-GroES<sub>7</sub> are decreased with a half-time of (23 ± 2) min. The exchange decreases with decreasing pH and seems to be strongly hindered at pH 5.2 due to the protonation of groups with pK ∼ 6.3, which stabilizes the protein quaternary structure. The destabilization of the protein quaternary structure caused by increased pH, decreased protein concentration, or urea accelerates the GroES subunit exchange. This study allows visualizing the subunit exchange in oligomeric proteins and confirms its direct connection with the stability of the protein quaternary structure.</p></div>","PeriodicalId":8760,"journal":{"name":"Biochimica et biophysica acta. Proteins and proteomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-chaperonin GroES subunit exchange as dependent on time, pH, protein concentration, and urea\",\"authors\":\"Victor Marchenkov , Alexey Surin , Victor Ugarov , Nina Kotova , Natalia Marchenko , Alexey Fedorov , Alexei Finkelstein , Vladimir Filimonov , Gennady Semisotnov\",\"doi\":\"10.1016/j.bbapap.2024.141032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The discovery of a subunit exchange in some oligomeric proteins, implying short-term dissociation of their oligomeric structure, requires new insights into the role of the quaternary structure in oligomeric protein stability and function. Here we demonstrate the effect of pH, protein concentration, and urea on the efficiency of GroES heptamer (GroES<sub>7</sub>) subunit exchange. A mixture of equimolar amounts of wild-type (WT) GroES<sub>7</sub> and its Ala97Cys mutant modified with iodoacetic acid (97-carboxymethyl cysteine or CMC-GroES<sub>7</sub>) was incubated in various conditions and subjected to isoelectric focusing (IEF) in polyacrylamide gel. For each sample, there are eight Coomassie-stained electrophoretic bands showing different charges that result from a different number of included mutant subunits, each carrying an additional negative charge. The intensities of these bands serve to analyze the protein subunit exchange. The protein stability is evaluated using the transverse urea gradient gel electrophoresis (TUGGE). At pH 8.0, the intensities of the initial bands corresponding to WT-GroES<sub>7</sub> and CMC-GroES<sub>7</sub> are decreased with a half-time of (23 ± 2) min. The exchange decreases with decreasing pH and seems to be strongly hindered at pH 5.2 due to the protonation of groups with pK ∼ 6.3, which stabilizes the protein quaternary structure. The destabilization of the protein quaternary structure caused by increased pH, decreased protein concentration, or urea accelerates the GroES subunit exchange. This study allows visualizing the subunit exchange in oligomeric proteins and confirms its direct connection with the stability of the protein quaternary structure.</p></div>\",\"PeriodicalId\":8760,\"journal\":{\"name\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Proteins and proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570963924000396\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Proteins and proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963924000396","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Co-chaperonin GroES subunit exchange as dependent on time, pH, protein concentration, and urea
The discovery of a subunit exchange in some oligomeric proteins, implying short-term dissociation of their oligomeric structure, requires new insights into the role of the quaternary structure in oligomeric protein stability and function. Here we demonstrate the effect of pH, protein concentration, and urea on the efficiency of GroES heptamer (GroES7) subunit exchange. A mixture of equimolar amounts of wild-type (WT) GroES7 and its Ala97Cys mutant modified with iodoacetic acid (97-carboxymethyl cysteine or CMC-GroES7) was incubated in various conditions and subjected to isoelectric focusing (IEF) in polyacrylamide gel. For each sample, there are eight Coomassie-stained electrophoretic bands showing different charges that result from a different number of included mutant subunits, each carrying an additional negative charge. The intensities of these bands serve to analyze the protein subunit exchange. The protein stability is evaluated using the transverse urea gradient gel electrophoresis (TUGGE). At pH 8.0, the intensities of the initial bands corresponding to WT-GroES7 and CMC-GroES7 are decreased with a half-time of (23 ± 2) min. The exchange decreases with decreasing pH and seems to be strongly hindered at pH 5.2 due to the protonation of groups with pK ∼ 6.3, which stabilizes the protein quaternary structure. The destabilization of the protein quaternary structure caused by increased pH, decreased protein concentration, or urea accelerates the GroES subunit exchange. This study allows visualizing the subunit exchange in oligomeric proteins and confirms its direct connection with the stability of the protein quaternary structure.
期刊介绍:
BBA Proteins and Proteomics covers protein structure conformation and dynamics; protein folding; protein-ligand interactions; enzyme mechanisms, models and kinetics; protein physical properties and spectroscopy; and proteomics and bioinformatics analyses of protein structure, protein function, or protein regulation.