测度局部收敛拓扑中算子函数的连续性

Pub Date : 2024-07-11 DOI:10.1134/s008154382401005x
A. M. Bikchentaev, O. E. Tikhonov
{"title":"测度局部收敛拓扑中算子函数的连续性","authors":"A. M. Bikchentaev, O. E. Tikhonov","doi":"10.1134/s008154382401005x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Let a von Neumann algebra <span>\\(\\mathcal M\\)</span> of operators act on a Hilbert space <span>\\(\\mathcal{H}\\)</span>, and let <span>\\(\\tau\\)</span> be a faithful normal semifinite trace on <span>\\(\\mathcal M\\)</span>. Let <span>\\(t_{\\tau\\text{l}}\\)</span> be the topology of <span>\\(\\tau\\)</span>-local convergence in measure on the *-algebra <span>\\(S(\\mathcal M,\\tau)\\)</span> of all <span>\\(\\tau\\)</span>-measurable operators. We prove the <span>\\(t_{\\tau\\text{l}}\\)</span>-continuity of the involution on the set of all normal operators in <span>\\(S(\\mathcal M,\\tau)\\)</span>, investigate the <span>\\(t_{\\tau\\text{l}}\\)</span>-continuity of operator functions on <span>\\(S(\\mathcal M,\\tau)\\)</span>, and show that the map <span>\\(A\\mapsto |A|\\)</span> is <span>\\(t_{\\tau\\text{l}}\\)</span>-continuous on the set of all partial isometries in <span>\\(\\mathcal M\\)</span>. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuity of Operator Functions in the Topology of Local Convergence in Measure\",\"authors\":\"A. M. Bikchentaev, O. E. Tikhonov\",\"doi\":\"10.1134/s008154382401005x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> Let a von Neumann algebra <span>\\\\(\\\\mathcal M\\\\)</span> of operators act on a Hilbert space <span>\\\\(\\\\mathcal{H}\\\\)</span>, and let <span>\\\\(\\\\tau\\\\)</span> be a faithful normal semifinite trace on <span>\\\\(\\\\mathcal M\\\\)</span>. Let <span>\\\\(t_{\\\\tau\\\\text{l}}\\\\)</span> be the topology of <span>\\\\(\\\\tau\\\\)</span>-local convergence in measure on the *-algebra <span>\\\\(S(\\\\mathcal M,\\\\tau)\\\\)</span> of all <span>\\\\(\\\\tau\\\\)</span>-measurable operators. We prove the <span>\\\\(t_{\\\\tau\\\\text{l}}\\\\)</span>-continuity of the involution on the set of all normal operators in <span>\\\\(S(\\\\mathcal M,\\\\tau)\\\\)</span>, investigate the <span>\\\\(t_{\\\\tau\\\\text{l}}\\\\)</span>-continuity of operator functions on <span>\\\\(S(\\\\mathcal M,\\\\tau)\\\\)</span>, and show that the map <span>\\\\(A\\\\mapsto |A|\\\\)</span> is <span>\\\\(t_{\\\\tau\\\\text{l}}\\\\)</span>-continuous on the set of all partial isometries in <span>\\\\(\\\\mathcal M\\\\)</span>. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s008154382401005x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s008154382401005x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 让一个冯-诺依曼算子代数作用于一个希尔伯特空间,并让\(\tau\)是\(\mathcal M\) 上一个忠实的正态半无限迹。让 \(t_{\tau\text{l}}\) 是所有 \(\tau\)-measurable operators 的 *-algebra \(S(\mathcal M,\tau)\)上 \(\tau\)-local convergence in measure 的拓扑。我们证明了在\(S(\mathcal M,\tau)\中所有正常算子集合上的卷积的连续性,研究了在\(S(\mathcal M. \tau)\中算子函数的连续性、\)上的算子函数的连续性,并证明映射(A|mapsto |A|)在 \(\mathcal M\) 的所有部分等距集合上是(t_{\tau\text{l}}\)连续的。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Continuity of Operator Functions in the Topology of Local Convergence in Measure

Abstract

Let a von Neumann algebra \(\mathcal M\) of operators act on a Hilbert space \(\mathcal{H}\), and let \(\tau\) be a faithful normal semifinite trace on \(\mathcal M\). Let \(t_{\tau\text{l}}\) be the topology of \(\tau\)-local convergence in measure on the *-algebra \(S(\mathcal M,\tau)\) of all \(\tau\)-measurable operators. We prove the \(t_{\tau\text{l}}\)-continuity of the involution on the set of all normal operators in \(S(\mathcal M,\tau)\), investigate the \(t_{\tau\text{l}}\)-continuity of operator functions on \(S(\mathcal M,\tau)\), and show that the map \(A\mapsto |A|\) is \(t_{\tau\text{l}}\)-continuous on the set of all partial isometries in \(\mathcal M\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信