添加石墨烯和中空玻璃粉的超高强度混凝土性能实验研究

IF 3.6 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Young-Jun Park, Hong-Sung Lee, Tae-Seok Seo
{"title":"添加石墨烯和中空玻璃粉的超高强度混凝土性能实验研究","authors":"Young-Jun Park, Hong-Sung Lee, Tae-Seok Seo","doi":"10.1186/s40069-024-00668-x","DOIUrl":null,"url":null,"abstract":"<p>A new ultra-high strength concrete, in which oxidized graphene nanoplatelet (GO) and hollow glass powder (HGP) are added, has been developed by authors. This paper presents the material properties of the concrete such as workability, compressive and tensile strengths, internal micro structure (SEM and MIP) as well as air-tightness which was tested using an equipment developed in this study. Test results show that workability and tensile strength significantly increase by a small addition of HGP, and that cGO (GO product of company c) and HGP are well dispersed without agglomeration effect, resulting in more than 20% of reduction in porosity. It is also observed that air-tightness increases by 40% compared with conventional ultra-high strength concrete due to reduction in porosity; thus, new ultra-high strength concrete is anticipated to be effectively used for structures that requires air-tightness such as hyperloop tube. Consequently, it was observed that the workability and mechanical properties of UHSC were increased when cGO and HGP were used instead of silica fume (SF), and authors believe that utilization of new material would contribute to the change in manufacturing method and increase in mechanical properties of concrete.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Properties of Graphene and Hollow Glass Powder-Added Ultra-High Strength Concrete\",\"authors\":\"Young-Jun Park, Hong-Sung Lee, Tae-Seok Seo\",\"doi\":\"10.1186/s40069-024-00668-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new ultra-high strength concrete, in which oxidized graphene nanoplatelet (GO) and hollow glass powder (HGP) are added, has been developed by authors. This paper presents the material properties of the concrete such as workability, compressive and tensile strengths, internal micro structure (SEM and MIP) as well as air-tightness which was tested using an equipment developed in this study. Test results show that workability and tensile strength significantly increase by a small addition of HGP, and that cGO (GO product of company c) and HGP are well dispersed without agglomeration effect, resulting in more than 20% of reduction in porosity. It is also observed that air-tightness increases by 40% compared with conventional ultra-high strength concrete due to reduction in porosity; thus, new ultra-high strength concrete is anticipated to be effectively used for structures that requires air-tightness such as hyperloop tube. Consequently, it was observed that the workability and mechanical properties of UHSC were increased when cGO and HGP were used instead of silica fume (SF), and authors believe that utilization of new material would contribute to the change in manufacturing method and increase in mechanical properties of concrete.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-024-00668-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-024-00668-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作者开发了一种新型超高强度混凝土,其中添加了氧化石墨烯纳米板(GO)和空心玻璃粉(HGP)。本文介绍了该混凝土的材料特性,如工作性、抗压和抗拉强度、内部微观结构(扫描电镜和 MIP)以及气密性,并使用本研究开发的设备对其进行了测试。测试结果表明,少量添加 HGP 就能显著提高工作性和抗拉强度,cGO(c 公司的 GO 产品)和 HGP 分散良好,没有结块效应,从而使孔隙率降低 20%以上。同时还观察到,由于孔隙率降低,气密性比传统超高强度混凝土提高了 40%;因此,新型超高强度混凝土有望有效用于要求气密性的结构,如超级高铁管道。因此,作者认为使用新材料将有助于改变制造方法和提高混凝土的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental Study on Properties of Graphene and Hollow Glass Powder-Added Ultra-High Strength Concrete

Experimental Study on Properties of Graphene and Hollow Glass Powder-Added Ultra-High Strength Concrete

A new ultra-high strength concrete, in which oxidized graphene nanoplatelet (GO) and hollow glass powder (HGP) are added, has been developed by authors. This paper presents the material properties of the concrete such as workability, compressive and tensile strengths, internal micro structure (SEM and MIP) as well as air-tightness which was tested using an equipment developed in this study. Test results show that workability and tensile strength significantly increase by a small addition of HGP, and that cGO (GO product of company c) and HGP are well dispersed without agglomeration effect, resulting in more than 20% of reduction in porosity. It is also observed that air-tightness increases by 40% compared with conventional ultra-high strength concrete due to reduction in porosity; thus, new ultra-high strength concrete is anticipated to be effectively used for structures that requires air-tightness such as hyperloop tube. Consequently, it was observed that the workability and mechanical properties of UHSC were increased when cGO and HGP were used instead of silica fume (SF), and authors believe that utilization of new material would contribute to the change in manufacturing method and increase in mechanical properties of concrete.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Concrete Structures and Materials
International Journal of Concrete Structures and Materials CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
6.30
自引率
5.90%
发文量
61
审稿时长
13 weeks
期刊介绍: The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on Properties and performance of concrete and concrete structures Advanced and improved experimental techniques Latest modelling methods Possible improvement and enhancement of concrete properties Structural and microstructural characterization Concrete applications Fiber reinforced concrete technology Concrete waste management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信