{"title":"在球的结合部对 QMC 体积和曲面积分进行类似于 Tchakaloff 的压缩","authors":"G. Elefante, A. Sommariva, M. Vianello","doi":"10.1007/s10092-024-00587-z","DOIUrl":null,"url":null,"abstract":"<p>We present an algorithm for Tchakaloff-like compression of quasi-Monte Carlo volume and surface integration on an arbitrary union of balls, via non-negative least squares. We also provide the corresponding Matlab codes together with several numerical tests.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tchakaloff-like compression of QMC volume and surface integration on the union of balls\",\"authors\":\"G. Elefante, A. Sommariva, M. Vianello\",\"doi\":\"10.1007/s10092-024-00587-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an algorithm for Tchakaloff-like compression of quasi-Monte Carlo volume and surface integration on an arbitrary union of balls, via non-negative least squares. We also provide the corresponding Matlab codes together with several numerical tests.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00587-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00587-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Tchakaloff-like compression of QMC volume and surface integration on the union of balls
We present an algorithm for Tchakaloff-like compression of quasi-Monte Carlo volume and surface integration on an arbitrary union of balls, via non-negative least squares. We also provide the corresponding Matlab codes together with several numerical tests.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.