光滑球面法诺三围的马宁-佩雷猜想

Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi
{"title":"光滑球面法诺三围的马宁-佩雷猜想","authors":"Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi","doi":"10.1007/s00029-024-00952-4","DOIUrl":null,"url":null,"abstract":"<p>The Manin–Peyre conjecture is established for smooth spherical Fano threefolds of semisimple rank one and type <i>N</i>. Together with the previously solved case <i>T</i> and the toric cases, this covers all types of smooth spherical Fano threefolds. The case <i>N</i> features a number of structural novelties; most notably, one may lose regularity of the ambient toric variety, the height conditions may contain fractional exponents, and it may be necessary to exclude a thin subset with exceptionally many rational points from the count, as otherwise Manin’s conjecture in its original form would turn out to be incorrect.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"334 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Manin–Peyre conjecture for smooth spherical Fano threefolds\",\"authors\":\"Valentin Blomer, Jörg Brüdern, Ulrich Derenthal, Giuliano Gagliardi\",\"doi\":\"10.1007/s00029-024-00952-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Manin–Peyre conjecture is established for smooth spherical Fano threefolds of semisimple rank one and type <i>N</i>. Together with the previously solved case <i>T</i> and the toric cases, this covers all types of smooth spherical Fano threefolds. The case <i>N</i> features a number of structural novelties; most notably, one may lose regularity of the ambient toric variety, the height conditions may contain fractional exponents, and it may be necessary to exclude a thin subset with exceptionally many rational points from the count, as otherwise Manin’s conjecture in its original form would turn out to be incorrect.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"334 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00952-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00952-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

马宁-佩雷猜想是针对半简单秩为一且类型为 N 的光滑球面法诺三折叠而建立的。连同之前已解决的 T 和环状情况,它涵盖了所有类型的光滑球面法诺三折叠。N 情况具有许多结构上的新颖之处;最值得注意的是,我们可能会失去周围环状变体的正则性,高度条件可能包含分数指数,而且可能有必要从计数中排除具有特别多有理点的薄子集,否则马宁猜想的原始形式就会被证明是不正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Manin–Peyre conjecture for smooth spherical Fano threefolds

The Manin–Peyre conjecture is established for smooth spherical Fano threefolds of semisimple rank one and type N. Together with the previously solved case T and the toric cases, this covers all types of smooth spherical Fano threefolds. The case N features a number of structural novelties; most notably, one may lose regularity of the ambient toric variety, the height conditions may contain fractional exponents, and it may be necessary to exclude a thin subset with exceptionally many rational points from the count, as otherwise Manin’s conjecture in its original form would turn out to be incorrect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信