非交换非等谱托达和洛特卡-沃尔特拉晶格,以及矩阵离散潘列维方程

Anhui Yan, Chunxia Li
{"title":"非交换非等谱托达和洛特卡-沃尔特拉晶格,以及矩阵离散潘列维方程","authors":"Anhui Yan, Chunxia Li","doi":"arxiv-2407.08486","DOIUrl":null,"url":null,"abstract":"The noncommutative analogues of the nonisospectral Toda and Lotka-Volterra\nlattices are proposed and studied by performing nonisopectral deformations on\nthe matrix orthogonal polynomials and matrix symmetric orthogonal polynomials\nwithout specific weight functions, respectively. Under stationary reductions,\nmatrix discrete Painlev\\'{e} I and matrix asymmetric discrete Painlev\\'{e} I\nequations are derived separately not only from the noncommutative\nnonisospectral lattices themselves, but also from their Lax pairs. The\nrationality of the stationary reduction has been justified in the sense that\nquasideterminant solutions are provided for the corresponding matrix discrete\nPainlev\\'{e} equations.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncommutative nonisospectral Toda and Lotka-Volterra lattices, and matrix discrete Painlevé equations\",\"authors\":\"Anhui Yan, Chunxia Li\",\"doi\":\"arxiv-2407.08486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The noncommutative analogues of the nonisospectral Toda and Lotka-Volterra\\nlattices are proposed and studied by performing nonisopectral deformations on\\nthe matrix orthogonal polynomials and matrix symmetric orthogonal polynomials\\nwithout specific weight functions, respectively. Under stationary reductions,\\nmatrix discrete Painlev\\\\'{e} I and matrix asymmetric discrete Painlev\\\\'{e} I\\nequations are derived separately not only from the noncommutative\\nnonisospectral lattices themselves, but also from their Lax pairs. The\\nrationality of the stationary reduction has been justified in the sense that\\nquasideterminant solutions are provided for the corresponding matrix discrete\\nPainlev\\\\'{e} equations.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对没有特定权函数的矩阵正交多项式和矩阵对称正交多项式分别进行非等谱变形,提出并研究了非等谱托达和洛特卡-伏特线方程的非交换类似物。在静态还原条件下,矩阵离散 Painlev\'{e} I 和矩阵非对称离散 Painlev\'{e} I 方程不仅可以从非交换正谱网格本身,而且可以从它们的 Lax 对分别得到。从为相应的矩阵离散 Painlev\'{e} 方程提供等差数列解的意义上,证明了静态还原的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noncommutative nonisospectral Toda and Lotka-Volterra lattices, and matrix discrete Painlevé equations
The noncommutative analogues of the nonisospectral Toda and Lotka-Volterra lattices are proposed and studied by performing nonisopectral deformations on the matrix orthogonal polynomials and matrix symmetric orthogonal polynomials without specific weight functions, respectively. Under stationary reductions, matrix discrete Painlev\'{e} I and matrix asymmetric discrete Painlev\'{e} I equations are derived separately not only from the noncommutative nonisospectral lattices themselves, but also from their Lax pairs. The rationality of the stationary reduction has been justified in the sense that quasideterminant solutions are provided for the corresponding matrix discrete Painlev\'{e} equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信