{"title":"包含跨正交置换群的同步自动机重置阈值的二次上限","authors":"Yinfeng Zhu","doi":"arxiv-2407.08135","DOIUrl":null,"url":null,"abstract":"For any synchronizing $n$-state deterministic automaton, \\v{C}ern\\'{y}\nconjectures the existence of a synchronizing word of length at most $(n-1)^2$.\nWe prove that there exists a synchronizing word of length at most $2n^2 - 7n +\n7$ for every synchronizing $n$-state deterministic automaton that satisfies the\nfollowing two properties: 1. The image of the action of each letter contains at\nleast $n-1$ states; 2. The actions of bijective letters generate a transitive\npermutation group on the state set.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quadratic upper bound on the reset thresholds of synchronizing automata containing a transitive permutation group\",\"authors\":\"Yinfeng Zhu\",\"doi\":\"arxiv-2407.08135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any synchronizing $n$-state deterministic automaton, \\\\v{C}ern\\\\'{y}\\nconjectures the existence of a synchronizing word of length at most $(n-1)^2$.\\nWe prove that there exists a synchronizing word of length at most $2n^2 - 7n +\\n7$ for every synchronizing $n$-state deterministic automaton that satisfies the\\nfollowing two properties: 1. The image of the action of each letter contains at\\nleast $n-1$ states; 2. The actions of bijective letters generate a transitive\\npermutation group on the state set.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A quadratic upper bound on the reset thresholds of synchronizing automata containing a transitive permutation group
For any synchronizing $n$-state deterministic automaton, \v{C}ern\'{y}
conjectures the existence of a synchronizing word of length at most $(n-1)^2$.
We prove that there exists a synchronizing word of length at most $2n^2 - 7n +
7$ for every synchronizing $n$-state deterministic automaton that satisfies the
following two properties: 1. The image of the action of each letter contains at
least $n-1$ states; 2. The actions of bijective letters generate a transitive
permutation group on the state set.