论树自动机、生成函数和微分方程

Rida Ait El Manssour, Vincent Cheval, Mahsa Shirmohammadi, James Worrell
{"title":"论树自动机、生成函数和微分方程","authors":"Rida Ait El Manssour, Vincent Cheval, Mahsa Shirmohammadi, James Worrell","doi":"arxiv-2407.08218","DOIUrl":null,"url":null,"abstract":"In this paper we introduce holonomic tree automata: a common extension of\nweighted tree automata and holonomic recurrences. We show that the generating\nfunction of the tree series represented by such an automaton is differentially\nalgebraic. Conversely, we give an algorithm that inputs a differentially\nalgebraic power series, represented as a solution of a rational dynamical\nsystem, and outputs an automaton whose generating function is the given series.\nSuch an automaton yields a recurrence that can be used to compute the terms of\nthe power series. We use the algorithm to obtain automaton representations of\nexponential generating functions of families of combinatorial objects given as\ncombinatorial species. Using techniques from differential algebra, we show that\nit is decidable both whether two automata represent the same formal tree series\nand whether they have the same generating function.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Tree Automata, Generating Functions, and Differential Equations\",\"authors\":\"Rida Ait El Manssour, Vincent Cheval, Mahsa Shirmohammadi, James Worrell\",\"doi\":\"arxiv-2407.08218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce holonomic tree automata: a common extension of\\nweighted tree automata and holonomic recurrences. We show that the generating\\nfunction of the tree series represented by such an automaton is differentially\\nalgebraic. Conversely, we give an algorithm that inputs a differentially\\nalgebraic power series, represented as a solution of a rational dynamical\\nsystem, and outputs an automaton whose generating function is the given series.\\nSuch an automaton yields a recurrence that can be used to compute the terms of\\nthe power series. We use the algorithm to obtain automaton representations of\\nexponential generating functions of families of combinatorial objects given as\\ncombinatorial species. Using techniques from differential algebra, we show that\\nit is decidable both whether two automata represent the same formal tree series\\nand whether they have the same generating function.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了整体树自动机:加权树自动机和整体递归的共同扩展。我们证明了这种自动机所代表的树序列的生成函数是微分代数的。反过来,我们给出了一种算法,输入微分代数幂级数(表示为有理动力系统的解),并输出一个自动机,其产生函数就是给定的幂级数。我们使用该算法来获得给定组合物种的组合对象族的指数生成函数的自动机表示。利用微分代数的技术,我们证明了两个自动机是否表示相同的形式树数列以及它们是否具有相同的生成函数都是可以判定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Tree Automata, Generating Functions, and Differential Equations
In this paper we introduce holonomic tree automata: a common extension of weighted tree automata and holonomic recurrences. We show that the generating function of the tree series represented by such an automaton is differentially algebraic. Conversely, we give an algorithm that inputs a differentially algebraic power series, represented as a solution of a rational dynamical system, and outputs an automaton whose generating function is the given series. Such an automaton yields a recurrence that can be used to compute the terms of the power series. We use the algorithm to obtain automaton representations of exponential generating functions of families of combinatorial objects given as combinatorial species. Using techniques from differential algebra, we show that it is decidable both whether two automata represent the same formal tree series and whether they have the same generating function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信