{"title":"科西嘉-撒丁岛区块的重力场和地热结构","authors":"F. Cocco, L. Casini, A. Funedda","doi":"10.1111/ter.12738","DOIUrl":null,"url":null,"abstract":"This paper presents a finite‐differences 3D numerical model that simulates the gravity and thermal structure of the Corsica‐Sardinia Block (CSB), an apparently stable lithospheric domain characterized by cryptic tectonic activity. In the experiments, we change the density and heat production rate of the model crust within a range of geologically realistic values to fit the measured Bouguer gravity anomaly and surface heat flow pattern. The discrepancy between the observed geophysical structure and the outcomes of numerical modelling are discussed in relation to the composition of the CSB crust and finally recast in the geodynamic framework of the western Mediterranean region.","PeriodicalId":22260,"journal":{"name":"Terra Nova","volume":"15 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravity field and geothermal structure of the Corsica‐Sardinia Block\",\"authors\":\"F. Cocco, L. Casini, A. Funedda\",\"doi\":\"10.1111/ter.12738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a finite‐differences 3D numerical model that simulates the gravity and thermal structure of the Corsica‐Sardinia Block (CSB), an apparently stable lithospheric domain characterized by cryptic tectonic activity. In the experiments, we change the density and heat production rate of the model crust within a range of geologically realistic values to fit the measured Bouguer gravity anomaly and surface heat flow pattern. The discrepancy between the observed geophysical structure and the outcomes of numerical modelling are discussed in relation to the composition of the CSB crust and finally recast in the geodynamic framework of the western Mediterranean region.\",\"PeriodicalId\":22260,\"journal\":{\"name\":\"Terra Nova\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Terra Nova\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/ter.12738\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terra Nova","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/ter.12738","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Gravity field and geothermal structure of the Corsica‐Sardinia Block
This paper presents a finite‐differences 3D numerical model that simulates the gravity and thermal structure of the Corsica‐Sardinia Block (CSB), an apparently stable lithospheric domain characterized by cryptic tectonic activity. In the experiments, we change the density and heat production rate of the model crust within a range of geologically realistic values to fit the measured Bouguer gravity anomaly and surface heat flow pattern. The discrepancy between the observed geophysical structure and the outcomes of numerical modelling are discussed in relation to the composition of the CSB crust and finally recast in the geodynamic framework of the western Mediterranean region.
期刊介绍:
Terra Nova publishes short, innovative and provocative papers of interest to a wide readership and covering the broadest spectrum of the Solid Earth and Planetary Sciences. Terra Nova encompasses geology, geophysics and geochemistry, and extends to the fluid envelopes (atmosphere, ocean, environment) whenever coupling with the Solid Earth is involved.