不同时间尺度上整体同一性的不同证明

Patrick Oliveira
{"title":"不同时间尺度上整体同一性的不同证明","authors":"Patrick Oliveira","doi":"arxiv-2407.08144","DOIUrl":null,"url":null,"abstract":"In the theory of time scales, given $\\mathbb{T}$ a time scale with at least\ntwo distinct elements, an integration theory is developed using ideas already\nwell known as Riemann sums. Another, more daring, approach is to treat an\nintegration theory on this scale from the point of view of the Lebesgue\nintegral, which generalizes the previous perspective. A great tool obtained\nwhen studying the integral of a scale $\\mathbb{T}$ as a Lebesgue integral is\nthe possibility of converting the ``$\\Delta$-integral of $\\mathbb{T}$'' to a\nclassical integral of $\\mathbb{R}$. In this way, we are able to migrate from a\ncalculation that is sometimes not so intuitive to a more friendly calculation.\nA question that arises, then, is whether the same result can be obtained just\nusing the ideas of integration via Riemann sums, without the need to develop\nthe Lebesgue integral for $\\mathbb{T}$. And, in this article, we answer this\nquestion affirmatively: In fact, for integrable functions an analogous result\nis valid by converting a $\\Delta$-integral over $\\mathbb{T}$ to a riemannian\nintegral of $\\mathbb{R}$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Different Demonstration for Integral Identity Across Distinct Time Scales\",\"authors\":\"Patrick Oliveira\",\"doi\":\"arxiv-2407.08144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the theory of time scales, given $\\\\mathbb{T}$ a time scale with at least\\ntwo distinct elements, an integration theory is developed using ideas already\\nwell known as Riemann sums. Another, more daring, approach is to treat an\\nintegration theory on this scale from the point of view of the Lebesgue\\nintegral, which generalizes the previous perspective. A great tool obtained\\nwhen studying the integral of a scale $\\\\mathbb{T}$ as a Lebesgue integral is\\nthe possibility of converting the ``$\\\\Delta$-integral of $\\\\mathbb{T}$'' to a\\nclassical integral of $\\\\mathbb{R}$. In this way, we are able to migrate from a\\ncalculation that is sometimes not so intuitive to a more friendly calculation.\\nA question that arises, then, is whether the same result can be obtained just\\nusing the ideas of integration via Riemann sums, without the need to develop\\nthe Lebesgue integral for $\\\\mathbb{T}$. And, in this article, we answer this\\nquestion affirmatively: In fact, for integrable functions an analogous result\\nis valid by converting a $\\\\Delta$-integral over $\\\\mathbb{T}$ to a riemannian\\nintegral of $\\\\mathbb{R}$.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在时间尺度理论中,给定 $\mathbb{T}$ 一个至少有两个不同元素的时间尺度,就可以利用已经众所周知的黎曼和的思想来发展积分理论。另一种更大胆的方法是从勒贝格积分的角度来处理这一尺度上的积分理论,这是对前一种观点的概括。将尺度 $\mathbb{T}$ 的积分作为 Lebesgue 积分来研究时获得的一个重要工具,就是可以将 $\mathbb{T}$ 的 ``$\Delta$-integral'' 转换为 $\mathbb{R}$ 的经典积分。这样,我们就能从有时并不那么直观的计算迁移到更友好的计算。那么,出现的一个问题是,是否只需使用通过黎曼和进行积分的思想,就能得到同样的结果,而无需为 $\mathbb{T}$ 建立 Lebesgue 积分。在本文中,我们将肯定地回答这个问题:事实上,对于可积分函数,通过将 $\Delta$-integral over $\mathbb{T}$ 转换为 $\mathbb{R}$ 的黎曼积分,类似的结果是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Different Demonstration for Integral Identity Across Distinct Time Scales
In the theory of time scales, given $\mathbb{T}$ a time scale with at least two distinct elements, an integration theory is developed using ideas already well known as Riemann sums. Another, more daring, approach is to treat an integration theory on this scale from the point of view of the Lebesgue integral, which generalizes the previous perspective. A great tool obtained when studying the integral of a scale $\mathbb{T}$ as a Lebesgue integral is the possibility of converting the ``$\Delta$-integral of $\mathbb{T}$'' to a classical integral of $\mathbb{R}$. In this way, we are able to migrate from a calculation that is sometimes not so intuitive to a more friendly calculation. A question that arises, then, is whether the same result can be obtained just using the ideas of integration via Riemann sums, without the need to develop the Lebesgue integral for $\mathbb{T}$. And, in this article, we answer this question affirmatively: In fact, for integrable functions an analogous result is valid by converting a $\Delta$-integral over $\mathbb{T}$ to a riemannian integral of $\mathbb{R}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信