涉及扭转和正均质哈密顿系统的兰德斯曼-拉泽尔条件

Natnael Gezahegn Mamo, Wahid Ullah
{"title":"涉及扭转和正均质哈密顿系统的兰德斯曼-拉泽尔条件","authors":"Natnael Gezahegn Mamo, Wahid Ullah","doi":"arxiv-2407.08389","DOIUrl":null,"url":null,"abstract":"We present multiplicity results for the periodic and Neumann-type boundary\nvalue problems associated with coupled Hamiltonian systems. For the periodic\nproblem, we couple a system having twist condition with another one whose\nnonlinearity lies between the gradients of two positive and positively\n2-homogeneous Hamiltonain functions. Concerning the Neumann-type problem, we\ntreat the same system without any twist assumption. We examine the cases of\nnonresonance, simple resonance, and double resonance by imposing some kind of\nLandesman--Lazer conditions.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landesman-Lazer conditions for systems involving twist and positively homogeneous Hamiltonian systems\",\"authors\":\"Natnael Gezahegn Mamo, Wahid Ullah\",\"doi\":\"arxiv-2407.08389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present multiplicity results for the periodic and Neumann-type boundary\\nvalue problems associated with coupled Hamiltonian systems. For the periodic\\nproblem, we couple a system having twist condition with another one whose\\nnonlinearity lies between the gradients of two positive and positively\\n2-homogeneous Hamiltonain functions. Concerning the Neumann-type problem, we\\ntreat the same system without any twist assumption. We examine the cases of\\nnonresonance, simple resonance, and double resonance by imposing some kind of\\nLandesman--Lazer conditions.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了与耦合哈密顿系统相关的周期性和诺伊曼型边界值问题的多重性结果。对于周期性问题,我们将一个具有扭转条件的系统与另一个非线性介于两个正2次均质哈密顿函数梯度之间的系统耦合起来。关于 Neumann 型问题,我们处理了不带任何扭曲假设的同一系统。通过施加某种兰德斯曼--拉泽尔条件,我们研究了非共振、简单共振和双重共振的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landesman-Lazer conditions for systems involving twist and positively homogeneous Hamiltonian systems
We present multiplicity results for the periodic and Neumann-type boundary value problems associated with coupled Hamiltonian systems. For the periodic problem, we couple a system having twist condition with another one whose nonlinearity lies between the gradients of two positive and positively 2-homogeneous Hamiltonain functions. Concerning the Neumann-type problem, we treat the same system without any twist assumption. We examine the cases of nonresonance, simple resonance, and double resonance by imposing some kind of Landesman--Lazer conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信