Chokkakula Ganesh, Aruru Sai Kumar, Sk Shoukath Vali, Girija Sravani Kondaveeti, Girish Wadhwa and Srinivasa Rao Karumuri
{"title":"用于快速写入访问 9T SRAM 的新型折叠式供电和升压位线摆动写入驱动器设计","authors":"Chokkakula Ganesh, Aruru Sai Kumar, Sk Shoukath Vali, Girija Sravani Kondaveeti, Girish Wadhwa and Srinivasa Rao Karumuri","doi":"10.1088/2631-8695/ad5e5c","DOIUrl":null,"url":null,"abstract":"This work presents a collapsed supply and boosted bit-line swing (CSBBS) write driver circuit, with the specific goal of enhancing write performance. The write ability of SRAM cells is gravely affected by device parameter variations in deep sub-threshold region of operations. The collapsed supply and boosted bit-line swing are key features aimed at achieving improvements in speed and efficiency during the memory write process. In comparison to conventional, Ultra dynamic scaled supply write (UDSS), Negative charge-boosted bit line (NCBBL), and Reconfigurable negative bit line collapsed supply (RNBLCS) write driver circuits, Proposed collapsed supply and boosted bit-line swing (CSBBS) for 9T SRAM cell has optimized write access delays of 0.74X, 0.41X, 0.32X and 0.21X, improvement in write margin (WM) of 1.51X, 1.34X, 1.22X and 1.12X respectively. The CSBBS Write driver circuit is implemented using custom compiler (Synopsys) through a 28 nm BSIM4 model card for bulk CMOS. MC simulation results are monitored on Cosmoscope wave viewer (Synopsys).","PeriodicalId":11753,"journal":{"name":"Engineering Research Express","volume":"56 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel design of collapsed supply and boosted bit-line swing write driver for fast write access 9T SRAM\",\"authors\":\"Chokkakula Ganesh, Aruru Sai Kumar, Sk Shoukath Vali, Girija Sravani Kondaveeti, Girish Wadhwa and Srinivasa Rao Karumuri\",\"doi\":\"10.1088/2631-8695/ad5e5c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a collapsed supply and boosted bit-line swing (CSBBS) write driver circuit, with the specific goal of enhancing write performance. The write ability of SRAM cells is gravely affected by device parameter variations in deep sub-threshold region of operations. The collapsed supply and boosted bit-line swing are key features aimed at achieving improvements in speed and efficiency during the memory write process. In comparison to conventional, Ultra dynamic scaled supply write (UDSS), Negative charge-boosted bit line (NCBBL), and Reconfigurable negative bit line collapsed supply (RNBLCS) write driver circuits, Proposed collapsed supply and boosted bit-line swing (CSBBS) for 9T SRAM cell has optimized write access delays of 0.74X, 0.41X, 0.32X and 0.21X, improvement in write margin (WM) of 1.51X, 1.34X, 1.22X and 1.12X respectively. The CSBBS Write driver circuit is implemented using custom compiler (Synopsys) through a 28 nm BSIM4 model card for bulk CMOS. MC simulation results are monitored on Cosmoscope wave viewer (Synopsys).\",\"PeriodicalId\":11753,\"journal\":{\"name\":\"Engineering Research Express\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Research Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-8695/ad5e5c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad5e5c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A novel design of collapsed supply and boosted bit-line swing write driver for fast write access 9T SRAM
This work presents a collapsed supply and boosted bit-line swing (CSBBS) write driver circuit, with the specific goal of enhancing write performance. The write ability of SRAM cells is gravely affected by device parameter variations in deep sub-threshold region of operations. The collapsed supply and boosted bit-line swing are key features aimed at achieving improvements in speed and efficiency during the memory write process. In comparison to conventional, Ultra dynamic scaled supply write (UDSS), Negative charge-boosted bit line (NCBBL), and Reconfigurable negative bit line collapsed supply (RNBLCS) write driver circuits, Proposed collapsed supply and boosted bit-line swing (CSBBS) for 9T SRAM cell has optimized write access delays of 0.74X, 0.41X, 0.32X and 0.21X, improvement in write margin (WM) of 1.51X, 1.34X, 1.22X and 1.12X respectively. The CSBBS Write driver circuit is implemented using custom compiler (Synopsys) through a 28 nm BSIM4 model card for bulk CMOS. MC simulation results are monitored on Cosmoscope wave viewer (Synopsys).