具有一阶自回归偏态误差的部分线性模型的贝叶斯诊断法

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Yonghui Liu, Jiawei Lu, Gilberto A. Paula, Shuangzhe Liu
{"title":"具有一阶自回归偏态误差的部分线性模型的贝叶斯诊断法","authors":"Yonghui Liu, Jiawei Lu, Gilberto A. Paula, Shuangzhe Liu","doi":"10.1007/s00180-024-01504-2","DOIUrl":null,"url":null,"abstract":"<p>This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (<span>\\(n=200{\\sim }400\\)</span>) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, <span>\\(\\phi \\)</span>-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors\",\"authors\":\"Yonghui Liu, Jiawei Lu, Gilberto A. Paula, Shuangzhe Liu\",\"doi\":\"10.1007/s00180-024-01504-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (<span>\\\\(n=200{\\\\sim }400\\\\)</span>) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, <span>\\\\(\\\\phi \\\\)</span>-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01504-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01504-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种贝叶斯局部影响方法,用于在具有一阶自回归偏态误差的部分线性模型中检测有影响的观测值。该方法适用于中小型数据集(n=200{/sim }400),并克服了一些理论限制,弥补了经典方法在中小型数据诊断方面的不足。采用 MCMC 算法进行参数估计,并使用三种扰动方案(先验、方差和数据)和三种测量尺度(贝叶斯因子、(\phi \)-发散和后验均值)进行贝叶斯局部影响分析。模拟研究验证了诊断的可靠性。最后,利用 1976 年洛杉矶臭氧浓度的数据进行了实际应用,进一步证明了诊断方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors

Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors

This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (\(n=200{\sim }400\)) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, \(\phi \)-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信