规模分离:使用不同密度图进行视频人群计数

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ao Zhang, Xin Deng, Baoying Liu, Weiwei Zhang, Jun Guo, Linrui Xie
{"title":"规模分离:使用不同密度图进行视频人群计数","authors":"Ao Zhang, Xin Deng, Baoying Liu, Weiwei Zhang, Jun Guo, Linrui Xie","doi":"10.1117/1.jei.33.4.043016","DOIUrl":null,"url":null,"abstract":"Most crowd counting methods rely on integrating density maps for prediction, but they encounter performance degradation in the face of density variations. Existing methods primarily employ a multi-scale architecture to mitigate this issue. However, few approaches concurrently consider both scale and timing information. We propose a scale-divided architecture for video crowd counting. Initially, density maps of different Gaussian scales are employed to retain information at various scales, accommodating scale changes in images. Subsequently, we observe that the spatiotemporal network places greater emphasis on individual locations, prompting us to aggregate temporal information at a specific scale. This design enables the temporal model to acquire more spatial information and alleviate occlusion issues. Experimental results on various public datasets demonstrate the superior performance of our proposed method.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"69 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale separation: video crowd counting with different density maps\",\"authors\":\"Ao Zhang, Xin Deng, Baoying Liu, Weiwei Zhang, Jun Guo, Linrui Xie\",\"doi\":\"10.1117/1.jei.33.4.043016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most crowd counting methods rely on integrating density maps for prediction, but they encounter performance degradation in the face of density variations. Existing methods primarily employ a multi-scale architecture to mitigate this issue. However, few approaches concurrently consider both scale and timing information. We propose a scale-divided architecture for video crowd counting. Initially, density maps of different Gaussian scales are employed to retain information at various scales, accommodating scale changes in images. Subsequently, we observe that the spatiotemporal network places greater emphasis on individual locations, prompting us to aggregate temporal information at a specific scale. This design enables the temporal model to acquire more spatial information and alleviate occlusion issues. Experimental results on various public datasets demonstrate the superior performance of our proposed method.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043016\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大多数人群计数方法都依靠整合密度图来进行预测,但面对密度变化,这些方法的性能会下降。现有方法主要采用多尺度架构来缓解这一问题。然而,很少有方法能同时考虑尺度和时间信息。我们提出了一种用于视频人群计数的尺度划分架构。最初,我们采用不同高斯尺度的密度图来保留不同尺度的信息,以适应图像的尺度变化。随后,我们观察到时空网络更重视单个位置,这促使我们在特定尺度上汇总时间信息。这种设计使时空模型能够获取更多空间信息,并缓解遮挡问题。在各种公共数据集上的实验结果表明,我们提出的方法性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scale separation: video crowd counting with different density maps
Most crowd counting methods rely on integrating density maps for prediction, but they encounter performance degradation in the face of density variations. Existing methods primarily employ a multi-scale architecture to mitigate this issue. However, few approaches concurrently consider both scale and timing information. We propose a scale-divided architecture for video crowd counting. Initially, density maps of different Gaussian scales are employed to retain information at various scales, accommodating scale changes in images. Subsequently, we observe that the spatiotemporal network places greater emphasis on individual locations, prompting us to aggregate temporal information at a specific scale. This design enables the temporal model to acquire more spatial information and alleviate occlusion issues. Experimental results on various public datasets demonstrate the superior performance of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信