哈达玛指数和哈达玛倒数的正定性

IF 0.8 3区 数学 Q2 MATHEMATICS
Takashi Sano
{"title":"哈达玛指数和哈达玛倒数的正定性","authors":"Takashi Sano","doi":"10.1007/s11117-024-01070-3","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> be a positive semidefinite matrix. It is known that the Hadamard exponential of <i>A</i> is positive semidefinite; it is positive definite if and only if no two columns of <i>A</i> are identical. We give an alternative proof of the latter part with an application to Hadamard inverses.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive definiteness of Hadamard exponentials and Hadamard inverses\",\"authors\":\"Takashi Sano\",\"doi\":\"10.1007/s11117-024-01070-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>A</i> be a positive semidefinite matrix. It is known that the Hadamard exponential of <i>A</i> is positive semidefinite; it is positive definite if and only if no two columns of <i>A</i> are identical. We give an alternative proof of the latter part with an application to Hadamard inverses.</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01070-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01070-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 A 是一个正半inite 矩阵。已知 A 的哈达玛指数是正半有限矩阵;当且仅当 A 中没有两列相同时,它才是正定矩阵。我们给出了后一部分的另一种证明,并将其应用于哈达玛倒数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive definiteness of Hadamard exponentials and Hadamard inverses

Let A be a positive semidefinite matrix. It is known that the Hadamard exponential of A is positive semidefinite; it is positive definite if and only if no two columns of A are identical. We give an alternative proof of the latter part with an application to Hadamard inverses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信