基于深度学习和时空聚类的降水δ18O分布预测新方法

Yang Li, Siyuan Huo, Bin Ma, Bingbing Pei, Qiankun Tan, Qing Guo, Deng Wang, Longbiao Yu
{"title":"基于深度学习和时空聚类的降水δ18O分布预测新方法","authors":"Yang Li, Siyuan Huo, Bin Ma, Bingbing Pei, Qiankun Tan, Qing Guo, Deng Wang, Longbiao Yu","doi":"10.1080/02626667.2024.2375403","DOIUrl":null,"url":null,"abstract":"Predicting precipitation δ18O accurately is crucial for understanding water cycles, paleoclimates, and hydrological applications. Yet, forecasting its spatio-temporal distribution remains challengi...","PeriodicalId":13036,"journal":{"name":"Hydrological Sciences Journal","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method for predicting precipitation δ18O distribution based on deep learning and spatio-temporal clustering\",\"authors\":\"Yang Li, Siyuan Huo, Bin Ma, Bingbing Pei, Qiankun Tan, Qing Guo, Deng Wang, Longbiao Yu\",\"doi\":\"10.1080/02626667.2024.2375403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting precipitation δ18O accurately is crucial for understanding water cycles, paleoclimates, and hydrological applications. Yet, forecasting its spatio-temporal distribution remains challengi...\",\"PeriodicalId\":13036,\"journal\":{\"name\":\"Hydrological Sciences Journal\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2024.2375403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02626667.2024.2375403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测降水δ18O对于了解水循环、古气候和水文应用至关重要。然而,预测其时空分布仍然是一项挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for predicting precipitation δ18O distribution based on deep learning and spatio-temporal clustering
Predicting precipitation δ18O accurately is crucial for understanding water cycles, paleoclimates, and hydrological applications. Yet, forecasting its spatio-temporal distribution remains challengi...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信