生物质中的可再生碳资源:利用呋喃平台构建分子结构

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Gloria V. López, Williams Porcal
{"title":"生物质中的可再生碳资源:利用呋喃平台构建分子结构","authors":"Gloria V. López, Williams Porcal","doi":"10.1515/pac-2024-0230","DOIUrl":null,"url":null,"abstract":"Currently, we find ourselves with the urgent need for chemistry to exert a substantial positive influence on environmental impact, by means of products and chemical processes. To achieve these objectives, we must pay special attention in terms of resource sustainability, considering factors such as life cycle assessments and minimizing carbon footprints. Biomass obtained from organic matter found in plants as well as agricultural and industrial waste, represents the most abundant reserve of renewable materials on our planet. In this perspective we highlight the research and innovation possibilities provided by renewable raw materials obtained from biomass within the domain of organic synthesis toward sustainable development. We focus our discussion on different reactions in the field of organic chemistry, primarily employing furanic platforms as renewable compounds derived from cellulosic biomass. The main aim is to generate high-value products, with a special emphasis on potential development of new pharmaceuticals.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Renewable carbon resource from biomass: building molecular architectures from furanic platforms\",\"authors\":\"Gloria V. López, Williams Porcal\",\"doi\":\"10.1515/pac-2024-0230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, we find ourselves with the urgent need for chemistry to exert a substantial positive influence on environmental impact, by means of products and chemical processes. To achieve these objectives, we must pay special attention in terms of resource sustainability, considering factors such as life cycle assessments and minimizing carbon footprints. Biomass obtained from organic matter found in plants as well as agricultural and industrial waste, represents the most abundant reserve of renewable materials on our planet. In this perspective we highlight the research and innovation possibilities provided by renewable raw materials obtained from biomass within the domain of organic synthesis toward sustainable development. We focus our discussion on different reactions in the field of organic chemistry, primarily employing furanic platforms as renewable compounds derived from cellulosic biomass. The main aim is to generate high-value products, with a special emphasis on potential development of new pharmaceuticals.\",\"PeriodicalId\":20911,\"journal\":{\"name\":\"Pure and Applied Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/pac-2024-0230\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2024-0230","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,我们发现化学迫切需要通过产品和化学工艺对环境影响产生实质性的积极影响。为了实现这些目标,我们必须特别关注资源的可持续性,考虑生命周期评估和碳足迹最小化等因素。从植物中的有机物以及农业和工业废弃物中获取的生物质是地球上最丰富的可再生材料储备。在这一视角中,我们强调了在有机合成领域,从生物质中获取的可再生原材料为研究和创新提供的可能性,以实现可持续发展。我们将重点讨论有机化学领域的各种反应,主要采用呋喃平台作为从纤维素生物质中提取的可再生化合物。主要目的是生产高价值产品,特别强调新药的潜在开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renewable carbon resource from biomass: building molecular architectures from furanic platforms
Currently, we find ourselves with the urgent need for chemistry to exert a substantial positive influence on environmental impact, by means of products and chemical processes. To achieve these objectives, we must pay special attention in terms of resource sustainability, considering factors such as life cycle assessments and minimizing carbon footprints. Biomass obtained from organic matter found in plants as well as agricultural and industrial waste, represents the most abundant reserve of renewable materials on our planet. In this perspective we highlight the research and innovation possibilities provided by renewable raw materials obtained from biomass within the domain of organic synthesis toward sustainable development. We focus our discussion on different reactions in the field of organic chemistry, primarily employing furanic platforms as renewable compounds derived from cellulosic biomass. The main aim is to generate high-value products, with a special emphasis on potential development of new pharmaceuticals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pure and Applied Chemistry
Pure and Applied Chemistry 化学-化学综合
CiteScore
4.00
自引率
0.00%
发文量
60
审稿时长
3-8 weeks
期刊介绍: Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信