仙女棋中的欧几里得之旅

Gabriele Di Pietro, Marco Ripà
{"title":"仙女棋中的欧几里得之旅","authors":"Gabriele Di Pietro, Marco Ripà","doi":"arxiv-2407.07903","DOIUrl":null,"url":null,"abstract":"The present paper aims to extend the knight's tour problem for\n$k$-dimensional grids of the form $\\{0,1\\}^k$ to other fairy chess leapers.\nAccordingly, we constructively show the existence of closed tours in $2 \\times\n2 \\times \\cdots \\times 2$ ($k$ times) chessboards concerning the wazir, the\nthreeleaper, and the zebra, for all $k \\geq 15$. Our result considers the three\nabove-mentioned leapers and replicates for each of them the recent discovery of\nEuclidean knight's tours for the same set of $2 \\times 2 \\times \\cdots \\times\n2$ grids, opening a new research path on the topic by studying different fairy\nchess leapers that perform jumps of fixed Euclidean length on given regular\ngrids, visiting all their vertices exactly once before coming back to the\nstarting one.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euclidean Tours in Fairy Chess\",\"authors\":\"Gabriele Di Pietro, Marco Ripà\",\"doi\":\"arxiv-2407.07903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper aims to extend the knight's tour problem for\\n$k$-dimensional grids of the form $\\\\{0,1\\\\}^k$ to other fairy chess leapers.\\nAccordingly, we constructively show the existence of closed tours in $2 \\\\times\\n2 \\\\times \\\\cdots \\\\times 2$ ($k$ times) chessboards concerning the wazir, the\\nthreeleaper, and the zebra, for all $k \\\\geq 15$. Our result considers the three\\nabove-mentioned leapers and replicates for each of them the recent discovery of\\nEuclidean knight's tours for the same set of $2 \\\\times 2 \\\\times \\\\cdots \\\\times\\n2$ grids, opening a new research path on the topic by studying different fairy\\nchess leapers that perform jumps of fixed Euclidean length on given regular\\ngrids, visiting all their vertices exactly once before coming back to the\\nstarting one.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在将$k$维网格的$\{0,1\}^k$形式的马巡游问题扩展到其他仙女棋跳跃者。相应地,我们构造性地证明了在所有$k \geq 15$的2 \times2 \times \cdots \times 2$($k$次)棋盘中存在关于瓦齐尔、三跃马和斑马的封闭巡游。我们的结果考虑了上述三个跳跃者,并为它们中的每一个复制了最近在同一组 $2 \times 2 \times \cdots \times2$ 网格中发现的欧几里得骑士巡游,通过研究在给定正则网格上执行固定欧几里得长度跳跃的不同仙棋跳跃者,开辟了一条新的研究路径,这些跳跃者在回到起点之前会准确地访问它们的所有顶点一次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean Tours in Fairy Chess
The present paper aims to extend the knight's tour problem for $k$-dimensional grids of the form $\{0,1\}^k$ to other fairy chess leapers. Accordingly, we constructively show the existence of closed tours in $2 \times 2 \times \cdots \times 2$ ($k$ times) chessboards concerning the wazir, the threeleaper, and the zebra, for all $k \geq 15$. Our result considers the three above-mentioned leapers and replicates for each of them the recent discovery of Euclidean knight's tours for the same set of $2 \times 2 \times \cdots \times 2$ grids, opening a new research path on the topic by studying different fairy chess leapers that perform jumps of fixed Euclidean length on given regular grids, visiting all their vertices exactly once before coming back to the starting one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信