{"title":"论布朗局部时间分数衍生物的一些特性","authors":"I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev","doi":"10.1134/s0081543824010115","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the properties of the fractional derivative <span>\\(D_\\alpha l(t,x)\\)</span> of order <span>\\(\\alpha<1/2\\)</span> of the Brownian local time <span>\\(l(t,x)\\)</span> with respect to the variable <span>\\(x\\)</span>. This derivative is understood as the convolution of the local time with the generalized function <span>\\(|x|^{-1-\\alpha}\\)</span>. We show that <span>\\(D_\\alpha l(t,x)\\)</span> appears naturally in Itô’s formula for the process <span>\\(|w(t)|^{1-\\alpha}\\)</span>. Using the martingale technique, we also study the limit behavior of <span>\\(D_\\alpha l(t,x)\\)</span> as <span>\\(t\\to\\infty\\)</span>. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Properties of the Fractional Derivative of the Brownian Local Time\",\"authors\":\"I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev\",\"doi\":\"10.1134/s0081543824010115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the properties of the fractional derivative <span>\\\\(D_\\\\alpha l(t,x)\\\\)</span> of order <span>\\\\(\\\\alpha<1/2\\\\)</span> of the Brownian local time <span>\\\\(l(t,x)\\\\)</span> with respect to the variable <span>\\\\(x\\\\)</span>. This derivative is understood as the convolution of the local time with the generalized function <span>\\\\(|x|^{-1-\\\\alpha}\\\\)</span>. We show that <span>\\\\(D_\\\\alpha l(t,x)\\\\)</span> appears naturally in Itô’s formula for the process <span>\\\\(|w(t)|^{1-\\\\alpha}\\\\)</span>. Using the martingale technique, we also study the limit behavior of <span>\\\\(D_\\\\alpha l(t,x)\\\\)</span> as <span>\\\\(t\\\\to\\\\infty\\\\)</span>. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543824010115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543824010115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Some Properties of the Fractional Derivative of the Brownian Local Time
Abstract
We study the properties of the fractional derivative \(D_\alpha l(t,x)\) of order \(\alpha<1/2\) of the Brownian local time \(l(t,x)\) with respect to the variable \(x\). This derivative is understood as the convolution of the local time with the generalized function \(|x|^{-1-\alpha}\). We show that \(D_\alpha l(t,x)\) appears naturally in Itô’s formula for the process \(|w(t)|^{1-\alpha}\). Using the martingale technique, we also study the limit behavior of \(D_\alpha l(t,x)\) as \(t\to\infty\).