广义相干态和随机移位算子

Pub Date : 2024-07-11 DOI:10.1134/s0081543824010127
R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev
{"title":"广义相干态和随机移位算子","authors":"R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev","doi":"10.1134/s0081543824010127","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the Chernoff averages for random generalized shift operators in the case of noncanonical commutation relations between creation and annihilation operators. We introduce the concepts of shift-dual ladder operators and generalized shift operators. As an example, we consider a one-parameter family of commutation relations for which generalized shift operators are unitary and satisfy the semigroup property on straight lines passing through the origin. For this family, we prove that the sequence of expectations of Feynman–Chernoff iterations of random shift operators converges to a limit strongly continuous semigroup. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Coherent States and Random Shift Operators\",\"authors\":\"R. Sh. Kalmetev, Yu. N. Orlov, V. Zh. Sakbaev\",\"doi\":\"10.1134/s0081543824010127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the Chernoff averages for random generalized shift operators in the case of noncanonical commutation relations between creation and annihilation operators. We introduce the concepts of shift-dual ladder operators and generalized shift operators. As an example, we consider a one-parameter family of commutation relations for which generalized shift operators are unitary and satisfy the semigroup property on straight lines passing through the origin. For this family, we prove that the sequence of expectations of Feynman–Chernoff iterations of random shift operators converges to a limit strongly continuous semigroup. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543824010127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543824010127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了在创造算子和湮灭算子之间存在非经典换向关系的情况下,随机广义移位算子的切尔诺夫平均数。我们引入了移位双梯形算子和广义移位算子的概念。作为一个例子,我们考虑了换向关系的一个参数族,对于这个族,广义移位算子是单元的,并且满足通过原点的直线上的半群性质。对于这个族,我们证明了随机移位算子的费曼-切尔诺夫迭代期望序列收敛于一个极限强连续半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Generalized Coherent States and Random Shift Operators

Abstract

We study the Chernoff averages for random generalized shift operators in the case of noncanonical commutation relations between creation and annihilation operators. We introduce the concepts of shift-dual ladder operators and generalized shift operators. As an example, we consider a one-parameter family of commutation relations for which generalized shift operators are unitary and satisfy the semigroup property on straight lines passing through the origin. For this family, we prove that the sequence of expectations of Feynman–Chernoff iterations of random shift operators converges to a limit strongly continuous semigroup.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信