论局部紧凑阿贝尔群的韦尔熵最小值

Pub Date : 2024-07-11 DOI:10.1134/s0081543824010097
Evgeny I. Zelenov
{"title":"论局部紧凑阿贝尔群的韦尔熵最小值","authors":"Evgeny I. Zelenov","doi":"10.1134/s0081543824010097","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> A construction of the Wehrl entropy is proposed for an arbitrary locally compact abelian group <span>\\(G\\)</span>. It is proved that the Wehrl entropy is not less than a certain nonnegative integer, which is an invariant of the group <span>\\(G\\)</span>. The minimum of the Wehrl entropy is attained on coherent states. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group\",\"authors\":\"Evgeny I. Zelenov\",\"doi\":\"10.1134/s0081543824010097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> A construction of the Wehrl entropy is proposed for an arbitrary locally compact abelian group <span>\\\\(G\\\\)</span>. It is proved that the Wehrl entropy is not less than a certain nonnegative integer, which is an invariant of the group <span>\\\\(G\\\\)</span>. The minimum of the Wehrl entropy is attained on coherent states. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543824010097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543824010097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 针对任意局部紧密无性群 \(G\) 提出了韦尔熵的构造。证明了韦尔熵不小于某个非负整数,而这个非负整数是群\(G\) 的不变式。韦尔熵的最小值是在相干态上达到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group

Abstract

A construction of the Wehrl entropy is proposed for an arbitrary locally compact abelian group \(G\). It is proved that the Wehrl entropy is not less than a certain nonnegative integer, which is an invariant of the group \(G\). The minimum of the Wehrl entropy is attained on coherent states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信