{"title":"通用 K3 表面上的微分形式","authors":"SHOUHEI MA","doi":"10.1017/s0305004124000100","DOIUrl":null,"url":null,"abstract":"We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed <jats:italic>K</jats:italic>3 surfaces. We prove that there is no nonzero holomorphic <jats:italic>k</jats:italic>-form for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000100_inline1.png\"/> <jats:tex-math> $0<k<10$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and for even <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000100_inline2.png\"/> <jats:tex-math> $k>19$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the remaining cases, we give an isomorphism between the space of holomorphic <jats:italic>k</jats:italic>-forms with that of vector-valued modular forms (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000100_inline3.png\"/> <jats:tex-math> $10\\leq k \\leq 18$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) or scalar-valued cusp forms (odd <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0305004124000100_inline4.png\"/> <jats:tex-math> $k\\geq 19$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) for the modular group. These results are in fact proved in the generality of lattice-polarisation.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"7 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential forms on universal K3 surfaces\",\"authors\":\"SHOUHEI MA\",\"doi\":\"10.1017/s0305004124000100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed <jats:italic>K</jats:italic>3 surfaces. We prove that there is no nonzero holomorphic <jats:italic>k</jats:italic>-form for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0305004124000100_inline1.png\\\"/> <jats:tex-math> $0<k<10$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and for even <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0305004124000100_inline2.png\\\"/> <jats:tex-math> $k>19$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the remaining cases, we give an isomorphism between the space of holomorphic <jats:italic>k</jats:italic>-forms with that of vector-valued modular forms (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0305004124000100_inline3.png\\\"/> <jats:tex-math> $10\\\\leq k \\\\leq 18$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) or scalar-valued cusp forms (odd <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0305004124000100_inline4.png\\\"/> <jats:tex-math> $k\\\\geq 19$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) for the modular group. These results are in fact proved in the generality of lattice-polarisation.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004124000100\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000100","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了尖 K3 曲面模空间光滑投影模型上的全形微分形式的消失和分类结果。我们证明,在 $0<k<10$ 和偶数 $k>19$ 时,不存在非零的全形 k 形式。在其余情况下,我们给出了全形 k 形式空间与模数群的矢量值模数形式($10\leq k \leq 18$)或标量值尖顶形式(奇$k\geq 19$)空间之间的同构关系。这些结果实际上是在格极化的一般性中证明的。
We give a vanishing and classification result for holomorphic differential forms on smooth projective models of the moduli spaces of pointed K3 surfaces. We prove that there is no nonzero holomorphic k-form for $0<k<10$ and for even $k>19$ . In the remaining cases, we give an isomorphism between the space of holomorphic k-forms with that of vector-valued modular forms ( $10\leq k \leq 18$ ) or scalar-valued cusp forms (odd $k\geq 19$ ) for the modular group. These results are in fact proved in the generality of lattice-polarisation.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.