递归函数的近似度合成

Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, Nitin Saurabh
{"title":"递归函数的近似度合成","authors":"Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, Nitin Saurabh","doi":"arxiv-2407.08385","DOIUrl":null,"url":null,"abstract":"Determining the approximate degree composition for Boolean functions remains\na significant unsolved problem in Boolean function complexity. In recent\ndecades, researchers have concentrated on proving that approximate degree\ncomposes for special types of inner and outer functions. An important and\nextensively studied class of functions are the recursive functions,\ni.e.~functions obtained by composing a base function with itself a number of\ntimes. Let $h^d$ denote the standard $d$-fold composition of the base function\n$h$. The main result of this work is to show that the approximate degree composes\nif either of the following conditions holds: \\begin{itemize} \\item The outer function $f:\\{0,1\\}^n\\to \\{0,1\\}$ is a recursive function of\nthe form $h^d$, with $h$ being any base function and $d= \\Omega(\\log\\log n)$. \\item The inner function is a recursive function of the form $h^d$, with $h$\nbeing any constant arity base function (other than AND and OR) and $d=\n\\Omega(\\log\\log n)$, where $n$ is the arity of the outer function. \\end{itemize} In terms of proof techniques, we first observe that the lower bound for\ncomposition can be obtained by introducing majority in between the inner and\nthe outer functions. We then show that majority can be \\emph{efficiently\neliminated} if the inner or outer function is a recursive function.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Degree Composition for Recursive Functions\",\"authors\":\"Sourav Chakraborty, Chandrima Kayal, Rajat Mittal, Manaswi Paraashar, Nitin Saurabh\",\"doi\":\"arxiv-2407.08385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the approximate degree composition for Boolean functions remains\\na significant unsolved problem in Boolean function complexity. In recent\\ndecades, researchers have concentrated on proving that approximate degree\\ncomposes for special types of inner and outer functions. An important and\\nextensively studied class of functions are the recursive functions,\\ni.e.~functions obtained by composing a base function with itself a number of\\ntimes. Let $h^d$ denote the standard $d$-fold composition of the base function\\n$h$. The main result of this work is to show that the approximate degree composes\\nif either of the following conditions holds: \\\\begin{itemize} \\\\item The outer function $f:\\\\{0,1\\\\}^n\\\\to \\\\{0,1\\\\}$ is a recursive function of\\nthe form $h^d$, with $h$ being any base function and $d= \\\\Omega(\\\\log\\\\log n)$. \\\\item The inner function is a recursive function of the form $h^d$, with $h$\\nbeing any constant arity base function (other than AND and OR) and $d=\\n\\\\Omega(\\\\log\\\\log n)$, where $n$ is the arity of the outer function. \\\\end{itemize} In terms of proof techniques, we first observe that the lower bound for\\ncomposition can be obtained by introducing majority in between the inner and\\nthe outer functions. We then show that majority can be \\\\emph{efficiently\\neliminated} if the inner or outer function is a recursive function.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定布尔函数的近似度构成仍然是布尔函数复杂性中一个重要的未决问题。近几十年来,研究者们集中于证明特殊类型的内函数和外函数的近似度构成。递归函数是一类重要的、被广泛研究的函数,即通过将一个基函数与自身多次合成而得到的函数。让$h^d$表示基函数$h$的标准$d$倍构成。这项工作的主要结果是证明,如果以下任一条件成立,则近似度合成:\开始{项目}\外部函数$f:\{0,1}^n\to \{0,1\}$是一个形式为$h^d$的递归函数,其中$h$是任意基函数,$d= \Omega(\log\log n)$。\项目 内部函数是一个形式为 $h^d$ 的递归函数,其中 $h$ 是任何常值基函数(AND 和 OR 除外),$d=\Omega(\log\log n)$,其中 $n$ 是外部函数的常值。\end{itemize} 在证明技术方面,我们首先观察到,通过在内部函数和外部函数之间引入多数函数,可以得到组合的下界。然后我们证明,如果内函数或外函数是递归函数,那么多数函数就可以被emph{eefficientlyeliminated}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Degree Composition for Recursive Functions
Determining the approximate degree composition for Boolean functions remains a significant unsolved problem in Boolean function complexity. In recent decades, researchers have concentrated on proving that approximate degree composes for special types of inner and outer functions. An important and extensively studied class of functions are the recursive functions, i.e.~functions obtained by composing a base function with itself a number of times. Let $h^d$ denote the standard $d$-fold composition of the base function $h$. The main result of this work is to show that the approximate degree composes if either of the following conditions holds: \begin{itemize} \item The outer function $f:\{0,1\}^n\to \{0,1\}$ is a recursive function of the form $h^d$, with $h$ being any base function and $d= \Omega(\log\log n)$. \item The inner function is a recursive function of the form $h^d$, with $h$ being any constant arity base function (other than AND and OR) and $d= \Omega(\log\log n)$, where $n$ is the arity of the outer function. \end{itemize} In terms of proof techniques, we first observe that the lower bound for composition can be obtained by introducing majority in between the inner and the outer functions. We then show that majority can be \emph{efficiently eliminated} if the inner or outer function is a recursive function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信