{"title":"算术级数上对称平方 L 函数傅里叶系数的分布","authors":"Dan Wang","doi":"10.1007/s13226-024-00628-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(L(s, \\mathrm{sym^2}f)\\)</span> be the corresponding symmetric square <i>L</i>-function associated to <i>f</i>(<i>z</i>), where <i>f</i>(<i>z</i>) is a primitive holomorphic cusp form of even integral weight <i>k</i> for the full modular group. Suppose that <span>\\(\\lambda _{\\mathrm{sym^2}f} (n)\\)</span> is the <i>n</i>th normalized Fourier coefficient of <span>\\(L(s, {\\mathrm{sym^2}f})\\)</span>. In this paper, we use the function equation and the large sieve inequality to study the asymptotic behaviour of the sums </p><span>$$\\begin{aligned} \\sum _{\\begin{array}{c} n\\leqslant x \\\\ n\\equiv a(\\textrm{mod}\\ q) \\end{array}}\\lambda ^{j}_{\\mathrm{sym^2}f}(n), 2\\leqslant j\\leqslant 4. \\end{aligned}$$</span>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The distribution of Fourier coefficients of symmetric square L-functions over arithmetic progressions\",\"authors\":\"Dan Wang\",\"doi\":\"10.1007/s13226-024-00628-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(L(s, \\\\mathrm{sym^2}f)\\\\)</span> be the corresponding symmetric square <i>L</i>-function associated to <i>f</i>(<i>z</i>), where <i>f</i>(<i>z</i>) is a primitive holomorphic cusp form of even integral weight <i>k</i> for the full modular group. Suppose that <span>\\\\(\\\\lambda _{\\\\mathrm{sym^2}f} (n)\\\\)</span> is the <i>n</i>th normalized Fourier coefficient of <span>\\\\(L(s, {\\\\mathrm{sym^2}f})\\\\)</span>. In this paper, we use the function equation and the large sieve inequality to study the asymptotic behaviour of the sums </p><span>$$\\\\begin{aligned} \\\\sum _{\\\\begin{array}{c} n\\\\leqslant x \\\\\\\\ n\\\\equiv a(\\\\textrm{mod}\\\\ q) \\\\end{array}}\\\\lambda ^{j}_{\\\\mathrm{sym^2}f}(n), 2\\\\leqslant j\\\\leqslant 4. \\\\end{aligned}$$</span>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00628-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00628-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 \(L(s, \mathrm{sym^2}f)\) 是与 f(z) 相关联的相应对称平方 L 函数,其中 f(z) 是全模态群的偶数积分权重 k 的原始全纯 Cusp 形式。假设 \(\lambda _{\mathrm{sym^2}f} (n)\) 是 \(L(s, {\mathrm{sym^2}f})\) 的第 n 个归一化傅里叶系数。在本文中,我们利用函数方程和大筛不等式来研究和 $$\begin{aligned} 的渐近行为。\sum _{begin{array}{c} n\leqslant x \ n\equiv a(\textrm{mod}\ q) \end{array}}\lambda ^{j}_{\mathrm{sym^2}f}(n), 2\leqslant j\leqslant 4.\end{aligned}$$
The distribution of Fourier coefficients of symmetric square L-functions over arithmetic progressions
Let \(L(s, \mathrm{sym^2}f)\) be the corresponding symmetric square L-function associated to f(z), where f(z) is a primitive holomorphic cusp form of even integral weight k for the full modular group. Suppose that \(\lambda _{\mathrm{sym^2}f} (n)\) is the nth normalized Fourier coefficient of \(L(s, {\mathrm{sym^2}f})\). In this paper, we use the function equation and the large sieve inequality to study the asymptotic behaviour of the sums