关于有限维冯-诺依曼代数的外量子自动形态的说明

Debashish Goswami
{"title":"关于有限维冯-诺依曼代数的外量子自动形态的说明","authors":"Debashish Goswami","doi":"10.1007/s13226-024-00637-w","DOIUrl":null,"url":null,"abstract":"<p>This is part of an ongoing project of formulating notion(s) of quantum group of outer automorphisms of a <span>\\(C^*\\)</span> or von Neumann algebra. Motivated by the fact that the group of outer automorphism of a <span>\\(II_1\\)</span> factor can be viewed as a subgroup of the group of group-like or invertible objects in the category of Hilbert bimodules of finite ranks, we explore a natural class of objects in the bimodule category of a finite dimensional (i.e. direct sum of matrix algebras) von Neumann algebra <span>\\(\\mathcal{A}\\)</span> which may come from the (co-action) of a discrete quantum group. In particular, we prove that any discrete quantum group giving an outer quantum symmetry on <span>\\(\\mathcal{A}\\)</span> in a sense defined by us must be a finite dimensional quantum group. We relate the analysis of such quantum groups or the corresponding fusion rings with certain combinatorial objects involving matrices with nonnegative integer entries and do some explicit computations in a few simple examples.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on outer quantum automorphisms of finite dimensional von Neumann algebras\",\"authors\":\"Debashish Goswami\",\"doi\":\"10.1007/s13226-024-00637-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This is part of an ongoing project of formulating notion(s) of quantum group of outer automorphisms of a <span>\\\\(C^*\\\\)</span> or von Neumann algebra. Motivated by the fact that the group of outer automorphism of a <span>\\\\(II_1\\\\)</span> factor can be viewed as a subgroup of the group of group-like or invertible objects in the category of Hilbert bimodules of finite ranks, we explore a natural class of objects in the bimodule category of a finite dimensional (i.e. direct sum of matrix algebras) von Neumann algebra <span>\\\\(\\\\mathcal{A}\\\\)</span> which may come from the (co-action) of a discrete quantum group. In particular, we prove that any discrete quantum group giving an outer quantum symmetry on <span>\\\\(\\\\mathcal{A}\\\\)</span> in a sense defined by us must be a finite dimensional quantum group. We relate the analysis of such quantum groups or the corresponding fusion rings with certain combinatorial objects involving matrices with nonnegative integer entries and do some explicit computations in a few simple examples.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00637-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00637-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这是我们正在进行的一个项目的一部分,这个项目的目的是提出一个 \(C^*\) 或 von Neumann 代数的外自变量的量子群的概念。受一个 \(II_1\) 因子的外自变量群可以被看作是有限阶的希尔伯特双模子范畴中的类群或可逆对象群的一个子群这一事实的激励,我们探索了有限维(即矩阵代数的直接和)冯-诺依曼代数 \(\mathcal{A}\)的双模子范畴中的一类自然对象,它可能来自离散量子群的(共同作用)。特别是,我们证明任何离散量子群在我们定义的意义上给出了 \(\mathcal{A}\) 的外量子对称性,它就一定是一个有限维量子群。我们把对这类量子群或相应的融合环的分析与涉及非负整数项矩阵的某些组合对象联系起来,并在几个简单的例子中做了一些明确的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on outer quantum automorphisms of finite dimensional von Neumann algebras

This is part of an ongoing project of formulating notion(s) of quantum group of outer automorphisms of a \(C^*\) or von Neumann algebra. Motivated by the fact that the group of outer automorphism of a \(II_1\) factor can be viewed as a subgroup of the group of group-like or invertible objects in the category of Hilbert bimodules of finite ranks, we explore a natural class of objects in the bimodule category of a finite dimensional (i.e. direct sum of matrix algebras) von Neumann algebra \(\mathcal{A}\) which may come from the (co-action) of a discrete quantum group. In particular, we prove that any discrete quantum group giving an outer quantum symmetry on \(\mathcal{A}\) in a sense defined by us must be a finite dimensional quantum group. We relate the analysis of such quantum groups or the corresponding fusion rings with certain combinatorial objects involving matrices with nonnegative integer entries and do some explicit computations in a few simple examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信