解决超越单调性的分割相等问题的强收敛算法

IF 2.6 3区 数学
Oluwatosin Temitope Mewomo, Victor Amarachi Uzor, Aviv Gibali
{"title":"解决超越单调性的分割相等问题的强收敛算法","authors":"Oluwatosin Temitope Mewomo, Victor Amarachi Uzor, Aviv Gibali","doi":"10.1007/s40314-024-02829-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on some split inverse problems, namely the split equality variational inequalities and common fixed point problems, and combine various operator theory techniques to establish minimum-norm strong convergence for our proposed method. We present two strong convergent results with (and without) reference to the monotonicity property of the cost operators. Our convergence analyses assume very mild conditions and thus generalize and extend recent related results in the literature. Furthermore, several numerical examples illustrate the practical potentials and advantages of our proposed algorithm.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"55 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A strongly convergent algorithm for solving split equality problems beyond monotonicity\",\"authors\":\"Oluwatosin Temitope Mewomo, Victor Amarachi Uzor, Aviv Gibali\",\"doi\":\"10.1007/s40314-024-02829-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we focus on some split inverse problems, namely the split equality variational inequalities and common fixed point problems, and combine various operator theory techniques to establish minimum-norm strong convergence for our proposed method. We present two strong convergent results with (and without) reference to the monotonicity property of the cost operators. Our convergence analyses assume very mild conditions and thus generalize and extend recent related results in the literature. Furthermore, several numerical examples illustrate the practical potentials and advantages of our proposed algorithm.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02829-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02829-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重点研究了一些分裂逆问题,即分裂相等变分不等式和公共定点问题,并结合各种算子理论技术,为我们提出的方法建立了最小规范强收敛性。我们提出了两个强收敛结果,分别参考(和不参考)了代价算子的单调性属性。我们的收敛性分析假设了非常温和的条件,因此概括并扩展了近期文献中的相关结果。此外,几个数值示例说明了我们提出的算法的实用潜力和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A strongly convergent algorithm for solving split equality problems beyond monotonicity

A strongly convergent algorithm for solving split equality problems beyond monotonicity

In this paper, we focus on some split inverse problems, namely the split equality variational inequalities and common fixed point problems, and combine various operator theory techniques to establish minimum-norm strong convergence for our proposed method. We present two strong convergent results with (and without) reference to the monotonicity property of the cost operators. Our convergence analyses assume very mild conditions and thus generalize and extend recent related results in the literature. Furthermore, several numerical examples illustrate the practical potentials and advantages of our proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信