与一般集合族相关的最大算子不等式

IF 1.1 3区 数学 Q1 MATHEMATICS
Biswaranjan Behera, Md. Nurul Molla
{"title":"与一般集合族相关的最大算子不等式","authors":"Biswaranjan Behera, Md. Nurul Molla","doi":"10.1007/s00025-024-02224-1","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathbb {E}}=\\{E_r(x):r&gt;0,x\\in X\\}\\)</span> be a family of open subsets of a topological space <i>X</i> equipped with a nonnegative Borel measure <span>\\(\\mu \\)</span> satisfying some basic properties. We establish sharp quantitative weighted norm inequalities for the Hardy–Littlewood maximal operator <span>\\(M_{{\\mathbb {E}}}\\)</span> associated with <span>\\({\\mathbb {E}}\\)</span> in terms of mixed <span>\\(A_p\\)</span>–<span>\\(A_\\infty \\)</span> constants. The main ingredient to prove this result is a sharp form of a weak reverse Hölder inequality for the <span>\\(A_{\\infty ,{\\mathbb {E}}}\\)</span> weights. As an application of this inequality, we also provide a quantitative version of the open property for <span>\\(A_{p,{\\mathbb {E}}}\\)</span> weights. Next, we prove a covering lemma in this setting and using this lemma establish the endpoint Fefferman–Stein weighted inequality for the maximal operator <span>\\(M_{{\\mathbb {E}}}\\)</span>. Moreover, vector-valued extensions for maximal inequalities are also obtained in this context.\n</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inequalities for Maximal Operators Associated with a Family of General Sets\",\"authors\":\"Biswaranjan Behera, Md. Nurul Molla\",\"doi\":\"10.1007/s00025-024-02224-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({\\\\mathbb {E}}=\\\\{E_r(x):r&gt;0,x\\\\in X\\\\}\\\\)</span> be a family of open subsets of a topological space <i>X</i> equipped with a nonnegative Borel measure <span>\\\\(\\\\mu \\\\)</span> satisfying some basic properties. We establish sharp quantitative weighted norm inequalities for the Hardy–Littlewood maximal operator <span>\\\\(M_{{\\\\mathbb {E}}}\\\\)</span> associated with <span>\\\\({\\\\mathbb {E}}\\\\)</span> in terms of mixed <span>\\\\(A_p\\\\)</span>–<span>\\\\(A_\\\\infty \\\\)</span> constants. The main ingredient to prove this result is a sharp form of a weak reverse Hölder inequality for the <span>\\\\(A_{\\\\infty ,{\\\\mathbb {E}}}\\\\)</span> weights. As an application of this inequality, we also provide a quantitative version of the open property for <span>\\\\(A_{p,{\\\\mathbb {E}}}\\\\)</span> weights. Next, we prove a covering lemma in this setting and using this lemma establish the endpoint Fefferman–Stein weighted inequality for the maximal operator <span>\\\\(M_{{\\\\mathbb {E}}}\\\\)</span>. Moreover, vector-valued extensions for maximal inequalities are also obtained in this context.\\n</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02224-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02224-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \({\mathbb {E}}=\{E_r(x):r>0,x\in X\}\) 是拓扑空间 X 的一个开放子集族,它配备了满足一些基本性质的非负伯勒量 \(\mu\)。我们为与\({\mathbb {E}}\) 相关联的哈迪-利特尔伍德最大算子\(M_{\mathbb {E}}\) 建立了混合\(A_p\)-\(A_\infty \)常数的尖锐定量加权规范不等式。证明这一结果的主要因素是针对 \(A_\infty ,{\mathbb {E}}) 权重的弱反向赫尔德不等式的尖锐形式。作为这个不等式的应用,我们还为\(A_{p,{\mathbb {E}}\) 权重提供了一个定量版的开放属性。接下来,我们证明了在这种情况下的一个覆盖级数,并利用这个级数建立了最大算子 \(M_{\mathbb {E}}\) 的端点费弗曼-斯泰恩加权不等式。此外,在此背景下还得到了最大不等式的向量值扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inequalities for Maximal Operators Associated with a Family of General Sets

Let \({\mathbb {E}}=\{E_r(x):r>0,x\in X\}\) be a family of open subsets of a topological space X equipped with a nonnegative Borel measure \(\mu \) satisfying some basic properties. We establish sharp quantitative weighted norm inequalities for the Hardy–Littlewood maximal operator \(M_{{\mathbb {E}}}\) associated with \({\mathbb {E}}\) in terms of mixed \(A_p\)\(A_\infty \) constants. The main ingredient to prove this result is a sharp form of a weak reverse Hölder inequality for the \(A_{\infty ,{\mathbb {E}}}\) weights. As an application of this inequality, we also provide a quantitative version of the open property for \(A_{p,{\mathbb {E}}}\) weights. Next, we prove a covering lemma in this setting and using this lemma establish the endpoint Fefferman–Stein weighted inequality for the maximal operator \(M_{{\mathbb {E}}}\). Moreover, vector-valued extensions for maximal inequalities are also obtained in this context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信