{"title":"自由单体的广义","authors":"Mark V. Lawson, Alina Vdovina","doi":"10.1007/s00233-024-10450-w","DOIUrl":null,"url":null,"abstract":"<p>We generalize free monoids by defining <i>k</i>-monoids. These are nothing other than the one-vertex higher-rank graphs used in <span>\\(C^{*}\\)</span>-algebra theory with the cardinality requirement waived. The 1-monoids are precisely the free monoids. We then take the next step and generalize <i>k</i>-monoids in such a way that self-similar group actions yield monoids of this type.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalizations of free monoids\",\"authors\":\"Mark V. Lawson, Alina Vdovina\",\"doi\":\"10.1007/s00233-024-10450-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalize free monoids by defining <i>k</i>-monoids. These are nothing other than the one-vertex higher-rank graphs used in <span>\\\\(C^{*}\\\\)</span>-algebra theory with the cardinality requirement waived. The 1-monoids are precisely the free monoids. We then take the next step and generalize <i>k</i>-monoids in such a way that self-similar group actions yield monoids of this type.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10450-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10450-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们通过定义 k-monoids 来概括自由单元。它们只不过是 \(C^{*}\)- 代数理论中使用的单顶点高阶图,但放弃了心数要求。1-单体正是自由单体。接下来,我们将进一步推广 k 单体,使自相似群作用产生这种类型的单体。
We generalize free monoids by defining k-monoids. These are nothing other than the one-vertex higher-rank graphs used in \(C^{*}\)-algebra theory with the cardinality requirement waived. The 1-monoids are precisely the free monoids. We then take the next step and generalize k-monoids in such a way that self-similar group actions yield monoids of this type.