mBRSET:用于临床和人口统计学预测的便携式视网膜眼底照片基准数据集

Chenwei Wu, David Restrepo, Luis Filipe Nakayama, Lucas Zago Ribeiro, Zitao Shuai, Nathan Santos Barboza, Maria Luiza Vieira Sousa, Raul Dias Fitterman, Alexandre Durao Alves Pereira, Caio Vinicius Saito Regatieri, Jose Augusto Stuchi, Fernando Korn Malerbi, Rafael E. Andrade
{"title":"mBRSET:用于临床和人口统计学预测的便携式视网膜眼底照片基准数据集","authors":"Chenwei Wu, David Restrepo, Luis Filipe Nakayama, Lucas Zago Ribeiro, Zitao Shuai, Nathan Santos Barboza, Maria Luiza Vieira Sousa, Raul Dias Fitterman, Alexandre Durao Alves Pereira, Caio Vinicius Saito Regatieri, Jose Augusto Stuchi, Fernando Korn Malerbi, Rafael E. Andrade","doi":"10.1101/2024.07.11.24310293","DOIUrl":null,"url":null,"abstract":"This paper introduces mBRSET, the first publicly available retina dataset captured using handheld retinal cameras in real-life, high-burden scenarios, comprising 5,164 images from 1,291 patients of diverse backgrounds. This dataset addresses the lack of ophthalmological data in low- and middle-income countries (LMICs) by providing a cost-effective and accessible solution for ocular screening and management. Portable retinal cameras enable applications outside traditional hospital settings, such as community health screenings and telemedicine consultations, thereby democratizing healthcare. Extensive metadata that are typically unavailable in other datasets, including age, sex, diabetes duration, treatments, and comorbidities, are also recorded. To validate the utility of mBRSET, state-of-the-art deep models, including ConvNeXt V2, Dino V2, and SwinV2, were trained for benchmarking, achieving high accuracy in clinical tasks diagnosing diabetic retinopathy, and macular edema; and in fairness tasks predicting education and insurance status. The mBRSET dataset serves as a resource for developing AI algorithms and investigating real-world applications, enhancing ophthalmological care in resource-constrained environments.","PeriodicalId":501390,"journal":{"name":"medRxiv - Ophthalmology","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"mBRSET: A Portable Retina Fundus Photos Benchmark Dataset for Clinical and Demographic Prediction\",\"authors\":\"Chenwei Wu, David Restrepo, Luis Filipe Nakayama, Lucas Zago Ribeiro, Zitao Shuai, Nathan Santos Barboza, Maria Luiza Vieira Sousa, Raul Dias Fitterman, Alexandre Durao Alves Pereira, Caio Vinicius Saito Regatieri, Jose Augusto Stuchi, Fernando Korn Malerbi, Rafael E. Andrade\",\"doi\":\"10.1101/2024.07.11.24310293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces mBRSET, the first publicly available retina dataset captured using handheld retinal cameras in real-life, high-burden scenarios, comprising 5,164 images from 1,291 patients of diverse backgrounds. This dataset addresses the lack of ophthalmological data in low- and middle-income countries (LMICs) by providing a cost-effective and accessible solution for ocular screening and management. Portable retinal cameras enable applications outside traditional hospital settings, such as community health screenings and telemedicine consultations, thereby democratizing healthcare. Extensive metadata that are typically unavailable in other datasets, including age, sex, diabetes duration, treatments, and comorbidities, are also recorded. To validate the utility of mBRSET, state-of-the-art deep models, including ConvNeXt V2, Dino V2, and SwinV2, were trained for benchmarking, achieving high accuracy in clinical tasks diagnosing diabetic retinopathy, and macular edema; and in fairness tasks predicting education and insurance status. The mBRSET dataset serves as a resource for developing AI algorithms and investigating real-world applications, enhancing ophthalmological care in resource-constrained environments.\",\"PeriodicalId\":501390,\"journal\":{\"name\":\"medRxiv - Ophthalmology\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Ophthalmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.11.24310293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.11.24310293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 mBRSET,这是首个公开可用的视网膜数据集,使用手持式视网膜照相机在现实生活中的高负担场景中采集,包括来自 1291 名不同背景患者的 5164 张图像。该数据集为中低收入国家(LMICs)的眼科筛查和管理提供了一种经济高效、易于获取的解决方案,从而解决了眼科数据缺乏的问题。便携式视网膜照相机可在传统的医院环境之外应用,如社区健康检查和远程医疗咨询,从而实现医疗保健的民主化。此外,还记录了其他数据集通常无法提供的大量元数据,包括年龄、性别、糖尿病病程、治疗方法和合并症。为了验证 mBRSET 的实用性,我们对包括 ConvNeXt V2、Dino V2 和 SwinV2 在内的先进深度模型进行了基准训练,结果表明,在诊断糖尿病视网膜病变和黄斑水肿的临床任务中,以及在预测教育和保险状况的公平任务中,mBRSET 都达到了很高的准确性。mBRSET 数据集是开发人工智能算法和研究实际应用的资源,可在资源有限的环境中提高眼科护理水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
mBRSET: A Portable Retina Fundus Photos Benchmark Dataset for Clinical and Demographic Prediction
This paper introduces mBRSET, the first publicly available retina dataset captured using handheld retinal cameras in real-life, high-burden scenarios, comprising 5,164 images from 1,291 patients of diverse backgrounds. This dataset addresses the lack of ophthalmological data in low- and middle-income countries (LMICs) by providing a cost-effective and accessible solution for ocular screening and management. Portable retinal cameras enable applications outside traditional hospital settings, such as community health screenings and telemedicine consultations, thereby democratizing healthcare. Extensive metadata that are typically unavailable in other datasets, including age, sex, diabetes duration, treatments, and comorbidities, are also recorded. To validate the utility of mBRSET, state-of-the-art deep models, including ConvNeXt V2, Dino V2, and SwinV2, were trained for benchmarking, achieving high accuracy in clinical tasks diagnosing diabetic retinopathy, and macular edema; and in fairness tasks predicting education and insurance status. The mBRSET dataset serves as a resource for developing AI algorithms and investigating real-world applications, enhancing ophthalmological care in resource-constrained environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信