位移余切束、交映群像和法锥变形

Damien Calaque, Pavel Safronov
{"title":"位移余切束、交映群像和法锥变形","authors":"Damien Calaque, Pavel Safronov","doi":"arxiv-2407.08622","DOIUrl":null,"url":null,"abstract":"This article generalizes the theory of shifted symplectic structures to the\nrelative context and non-geometric stacks. We describe basic constructions that\nnaturally appear in this theory: shifted cotangent bundles and the AKSZ\nprocedure. Along the way, we also develop the theory of shifted symplectic\ngroupoids presenting shifted symplectic structures on quotients and define a\ndeformation to the normal cone for shifted Lagrangian morphisms.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifted cotangent bundles, symplectic groupoids and deformation to the normal cone\",\"authors\":\"Damien Calaque, Pavel Safronov\",\"doi\":\"arxiv-2407.08622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article generalizes the theory of shifted symplectic structures to the\\nrelative context and non-geometric stacks. We describe basic constructions that\\nnaturally appear in this theory: shifted cotangent bundles and the AKSZ\\nprocedure. Along the way, we also develop the theory of shifted symplectic\\ngroupoids presenting shifted symplectic structures on quotients and define a\\ndeformation to the normal cone for shifted Lagrangian morphisms.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将移位折射结构理论推广到相对论和非几何堆栈。我们描述了这一理论中自然出现的基本构造:移位余切束和 AKSZ 程序。同时,我们还发展了在商上呈现移位交映结构的移位交映群理论,并定义了移位拉格朗日形态的法锥变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shifted cotangent bundles, symplectic groupoids and deformation to the normal cone
This article generalizes the theory of shifted symplectic structures to the relative context and non-geometric stacks. We describe basic constructions that naturally appear in this theory: shifted cotangent bundles and the AKSZ procedure. Along the way, we also develop the theory of shifted symplectic groupoids presenting shifted symplectic structures on quotients and define a deformation to the normal cone for shifted Lagrangian morphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信