涉及二重、三重和四重和的罗杰斯-拉马努扬式等差数列

Zhi Li, Liuquan Wang
{"title":"涉及二重、三重和四重和的罗杰斯-拉马努扬式等差数列","authors":"Zhi Li, Liuquan Wang","doi":"10.1007/s11139-024-00901-x","DOIUrl":null,"url":null,"abstract":"<p>We prove a number of new Rogers–Ramanujan type identities involving double, triple and quadruple sums. They were discovered after an extensive search using Maple. The main idea of proofs is to reduce them to some known identities in the literature. This is achieved by direct summation or the constant term method. We also obtain some new single-sum identities as consequences.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rogers–Ramanujan type identities involving double, triple and quadruple sums\",\"authors\":\"Zhi Li, Liuquan Wang\",\"doi\":\"10.1007/s11139-024-00901-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a number of new Rogers–Ramanujan type identities involving double, triple and quadruple sums. They were discovered after an extensive search using Maple. The main idea of proofs is to reduce them to some known identities in the literature. This is achieved by direct summation or the constant term method. We also obtain some new single-sum identities as consequences.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00901-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00901-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一些新的罗杰斯-拉马努扬类型的等式,涉及二重、三重和四重和。它们是在使用 Maple 进行广泛搜索后发现的。证明的主要思路是将它们还原为文献中的一些已知等式。这是通过直接求和或常数项法实现的。作为结果,我们还得到了一些新的单和等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rogers–Ramanujan type identities involving double, triple and quadruple sums

We prove a number of new Rogers–Ramanujan type identities involving double, triple and quadruple sums. They were discovered after an extensive search using Maple. The main idea of proofs is to reduce them to some known identities in the literature. This is achieved by direct summation or the constant term method. We also obtain some new single-sum identities as consequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信