锚定交映嵌入

Michael Hutchings, Agniva Roy, Morgan Weiler, Yuan Yao
{"title":"锚定交映嵌入","authors":"Michael Hutchings, Agniva Roy, Morgan Weiler, Yuan Yao","doi":"arxiv-2407.08512","DOIUrl":null,"url":null,"abstract":"Given two four-dimensional symplectic manifolds, together with knots in their\nboundaries, we define an ``anchored symplectic embedding'' to be a symplectic\nembedding, together with a two-dimensional symplectic cobordism between the\nknots (in the four-dimensional cobordism determined by the embedding). We use\ntechniques from embedded contact homology to determine quantitative critera for\nwhen anchored symplectic embeddings exist, for many examples of toric domains.\nIn particular we find examples where ordinarily symplectic embeddings exist,\nbut they cannot be upgraded to anchored symplectic embeddings unless one\nenlarges the target domain.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anchored symplectic embeddings\",\"authors\":\"Michael Hutchings, Agniva Roy, Morgan Weiler, Yuan Yao\",\"doi\":\"arxiv-2407.08512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two four-dimensional symplectic manifolds, together with knots in their\\nboundaries, we define an ``anchored symplectic embedding'' to be a symplectic\\nembedding, together with a two-dimensional symplectic cobordism between the\\nknots (in the four-dimensional cobordism determined by the embedding). We use\\ntechniques from embedded contact homology to determine quantitative critera for\\nwhen anchored symplectic embeddings exist, for many examples of toric domains.\\nIn particular we find examples where ordinarily symplectic embeddings exist,\\nbut they cannot be upgraded to anchored symplectic embeddings unless one\\nenlarges the target domain.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定两个四维交映流形以及它们边界上的结,我们定义 "锚定交映内嵌 "为交映内嵌,以及结之间的二维交映共线(在由内嵌决定的四维共线中)。我们利用嵌入接触同源性的技术,为许多环状域的例子确定了锚定交映嵌入存在的定量标准。我们特别发现了一些例子,这些例子中通常存在交映嵌入,但它们不能升级为锚定交映嵌入,除非扩大目标域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anchored symplectic embeddings
Given two four-dimensional symplectic manifolds, together with knots in their boundaries, we define an ``anchored symplectic embedding'' to be a symplectic embedding, together with a two-dimensional symplectic cobordism between the knots (in the four-dimensional cobordism determined by the embedding). We use techniques from embedded contact homology to determine quantitative critera for when anchored symplectic embeddings exist, for many examples of toric domains. In particular we find examples where ordinarily symplectic embeddings exist, but they cannot be upgraded to anchored symplectic embeddings unless one enlarges the target domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信