非稳态地震激励下塑性铰链框架结构等效线性化的有效方法

IF 2.6 2区 工程技术 Q2 ENGINEERING, CIVIL
Huan Huang, Yingxiong Li, Yuyu Li
{"title":"非稳态地震激励下塑性铰链框架结构等效线性化的有效方法","authors":"Huan Huang, Yingxiong Li, Yuyu Li","doi":"10.1007/s11803-024-2265-5","DOIUrl":null,"url":null,"abstract":"<p>An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations. The concentrated plastic hinges, described by the Bouc-Wen model, are assumed to occur at the two ends of a linear-elastic beam element. The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations. Then, the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems. To solve the equation of motion for equivalent linear systems, the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency. Finally, the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology, which provides a new way of obtaining the equivalent linear systems at different time instants. Based on the explicit time-domain method, the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency. Numerical examples indicate that the proposed approach has high computational efficiency, and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":"22 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient approach for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations\",\"authors\":\"Huan Huang, Yingxiong Li, Yuyu Li\",\"doi\":\"10.1007/s11803-024-2265-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations. The concentrated plastic hinges, described by the Bouc-Wen model, are assumed to occur at the two ends of a linear-elastic beam element. The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations. Then, the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems. To solve the equation of motion for equivalent linear systems, the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency. Finally, the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology, which provides a new way of obtaining the equivalent linear systems at different time instants. Based on the explicit time-domain method, the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency. Numerical examples indicate that the proposed approach has high computational efficiency, and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.</p>\",\"PeriodicalId\":11416,\"journal\":{\"name\":\"Earthquake Engineering and Engineering Vibration\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Engineering Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11803-024-2265-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2265-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

针对非稳态地震激励下带有塑性铰链的框架结构,提出了一种高效的等效线性化方法。布克-温模型描述的集中塑性铰链假定发生在线性弹性梁单元的两端。控制塑性旋转位移及其相应滞后位移的辅助微分方程被线性化微分方程所取代。然后,原始非线性系统的两组运动方程可以简化为等效线性系统的扩展阶等效线性化运动方程。为了求解等效线性系统的运动方程,基于显式时域法进行了高效的非稳态随机振动分析。最后,结合并行计算技术研究了所提出的等效参数初始值处理方法,为获得不同时间时刻的等效线性系统提供了一种新方法。基于显式时域方法,可以通过降维分析高效计算出收敛等效线性系统的关键响应。数值实例表明,所提出的方法具有很高的计算效率,对弱非线性和中强度非线性系统具有很好的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient approach for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations

An efficient approach is proposed for the equivalent linearization of frame structures with plastic hinges under nonstationary seismic excitations. The concentrated plastic hinges, described by the Bouc-Wen model, are assumed to occur at the two ends of a linear-elastic beam element. The auxiliary differential equations governing the plastic rotational displacements and their corresponding hysteretic displacements are replaced with linearized differential equations. Then, the two sets of equations of motion for the original nonlinear system can be reduced to an expanded-order equivalent linearized equation of motion for equivalent linear systems. To solve the equation of motion for equivalent linear systems, the nonstationary random vibration analysis is carried out based on the explicit time-domain method with high efficiency. Finally, the proposed treatment method for initial values of equivalent parameters is investigated in conjunction with parallel computing technology, which provides a new way of obtaining the equivalent linear systems at different time instants. Based on the explicit time-domain method, the key responses of interest of the converged equivalent linear system can be calculated through dimension reduction analysis with high efficiency. Numerical examples indicate that the proposed approach has high computational efficiency, and shows good applicability to weak nonlinear and medium-intensity nonlinear systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
21.40%
发文量
1057
审稿时长
9 months
期刊介绍: Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery. The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信