{"title":"考虑质量参与系数的中心差分法在下部结构实时动态测试中的稳定性和准确性","authors":"Lichang Zheng, Guoshan Xu, Ge Yang, Zhen Wang, Kaibo Yang, Zhenyun Zheng","doi":"10.1007/s11803-024-2261-9","DOIUrl":null,"url":null,"abstract":"<p>For real-time dynamic substructure testing (RTDST), the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated. Therefore, this study proposes to investigate the stability and accuracy of the central difference method (CDM) for RTDST considering the specimen mass participation coefficient. First, the theory of the CDM for RTDST is presented. Next, the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated. Finally, numerical simulations and experimental tests are conducted for verifying the effectiveness of the method. The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen, and the stability limit first increases and then decreases as the mass participation coefficient increases. In most cases, the mass participation coefficient will increase the stability limit of the algorithm, but in specific circumstances, the algorithm may lose its stability. The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and accuracy of central difference method for real-time dynamic substructure testing considering mass participation coefficient\",\"authors\":\"Lichang Zheng, Guoshan Xu, Ge Yang, Zhen Wang, Kaibo Yang, Zhenyun Zheng\",\"doi\":\"10.1007/s11803-024-2261-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For real-time dynamic substructure testing (RTDST), the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated. Therefore, this study proposes to investigate the stability and accuracy of the central difference method (CDM) for RTDST considering the specimen mass participation coefficient. First, the theory of the CDM for RTDST is presented. Next, the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated. Finally, numerical simulations and experimental tests are conducted for verifying the effectiveness of the method. The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen, and the stability limit first increases and then decreases as the mass participation coefficient increases. In most cases, the mass participation coefficient will increase the stability limit of the algorithm, but in specific circumstances, the algorithm may lose its stability. The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.</p>\",\"PeriodicalId\":11416,\"journal\":{\"name\":\"Earthquake Engineering and Engineering Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Engineering Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11803-024-2261-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2261-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Stability and accuracy of central difference method for real-time dynamic substructure testing considering mass participation coefficient
For real-time dynamic substructure testing (RTDST), the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated. Therefore, this study proposes to investigate the stability and accuracy of the central difference method (CDM) for RTDST considering the specimen mass participation coefficient. First, the theory of the CDM for RTDST is presented. Next, the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated. Finally, numerical simulations and experimental tests are conducted for verifying the effectiveness of the method. The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen, and the stability limit first increases and then decreases as the mass participation coefficient increases. In most cases, the mass participation coefficient will increase the stability limit of the algorithm, but in specific circumstances, the algorithm may lose its stability. The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
期刊介绍:
Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery.
The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.