Sonia Benkhellat, Mohammed Kadri, Abdelghani Seghir
{"title":"土-结构和颗粒材料-结构相互作用对平底钢筋混凝土筒仓地震响应影响的数值研究","authors":"Sonia Benkhellat, Mohammed Kadri, Abdelghani Seghir","doi":"10.1007/s11803-024-2260-x","DOIUrl":null,"url":null,"abstract":"<p>In this work, a numerical study of the effects of soil-structure interaction (SSI) and granular material-structure interaction (GSI) on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted. A series of incremental dynamic analyses (IDA) are performed on a case of large reinforced concrete silo using 10 seismic recordings. The IDA results are given by two average IDA capacity curves, which are represented, as well as the seismic capacity of the studied structure, with and without a consideration of the SSI while accounting for the effect of GSI. These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices, one based on dissipated energy and the other on displacement and dissipated energy. The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear, and these curves allow one to obtain the two critical points and the different limit states of the structure. It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure, particularly at higher levels of PGA. Moreover, the effect of the SSI reduces the damage index of the studied structure by 4%.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of the effects of soil-structure and granular material-structure interaction on the seismic response of a flat-bottom reinforced concrete silo\",\"authors\":\"Sonia Benkhellat, Mohammed Kadri, Abdelghani Seghir\",\"doi\":\"10.1007/s11803-024-2260-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a numerical study of the effects of soil-structure interaction (SSI) and granular material-structure interaction (GSI) on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted. A series of incremental dynamic analyses (IDA) are performed on a case of large reinforced concrete silo using 10 seismic recordings. The IDA results are given by two average IDA capacity curves, which are represented, as well as the seismic capacity of the studied structure, with and without a consideration of the SSI while accounting for the effect of GSI. These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices, one based on dissipated energy and the other on displacement and dissipated energy. The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear, and these curves allow one to obtain the two critical points and the different limit states of the structure. It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure, particularly at higher levels of PGA. Moreover, the effect of the SSI reduces the damage index of the studied structure by 4%.</p>\",\"PeriodicalId\":11416,\"journal\":{\"name\":\"Earthquake Engineering and Engineering Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Engineering Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11803-024-2260-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2260-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical investigation of the effects of soil-structure and granular material-structure interaction on the seismic response of a flat-bottom reinforced concrete silo
In this work, a numerical study of the effects of soil-structure interaction (SSI) and granular material-structure interaction (GSI) on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted. A series of incremental dynamic analyses (IDA) are performed on a case of large reinforced concrete silo using 10 seismic recordings. The IDA results are given by two average IDA capacity curves, which are represented, as well as the seismic capacity of the studied structure, with and without a consideration of the SSI while accounting for the effect of GSI. These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices, one based on dissipated energy and the other on displacement and dissipated energy. The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear, and these curves allow one to obtain the two critical points and the different limit states of the structure. It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure, particularly at higher levels of PGA. Moreover, the effect of the SSI reduces the damage index of the studied structure by 4%.
期刊介绍:
Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery.
The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.